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ABSTRACT

The Multilevel modeling (MLM) approach has a great flexibility in that can handle
various methodological issues that may arise with single-case studies, such as the need to model
possible dependency in the errors, linear or nonlinear trends, and count outcomes (e.g.,Van den
Noortgate & Onghena, 2003a). By using the MLM framework, researchers can not only model
dependency in the errors but also model a variety of level-1lerror structures.

The effect of misspecification in the level-1 error structure has been well studied for
MLM analyses. Generally, it was found that the estimates of the fixed effects were unbiased but
the estimates of variance parameters were substantially biased when level-1 error structure was
misspecified. However, in previous misspecification studies as well as applied studies of
multilevel models with single-case data, a critical assumption has been made. Researchers
generally assumed that the level-1 error structure is constant across all participants.

It is possible that the level-1 error structure may not be same across participants. Previous
studies show that there is a possibility that the level-1 error structure may not be same across
participants (Baek & Ferron, 2011; Baek & Ferron, 2013; Maggin et al., 2011). If much variation
in level-1 error structure exists, this can possibly impact estimation of the fixed effects and
random effects. Despite the importance of this issue, the effects of modeling between-case
variation in the level-1 error structure had not yet been systematically studied. The purpose of
this simulation study was to extend the MLM modeling in growth curve models to allow the
level-1 error structure to vary across cases, and to identify the consequences of modeling and not

modeling between-case variation in the level-1 error structure for single-case studies.
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A Monte Carlo simulation was conducted that examined conditions that varied in series
length per case (10 or 20), the number of cases (4 or 8), the true level-1 errors structure
(homogenous, moderately heterogeneous, severely heterogeneous), the level-2 error variance in
baseline slope and shift in slope (.05 or .2 times the level-1 variance), and the method to analyze
the data (allow level-1 error variance and autocorrelation to vary across cases (Model 2) or not
allow level-1 error variance and autocorrelation to vary across cases (Model 1)). All simulated
data sets were analyzed using Bayesian estimation. For each condition, 1000 data were
simulated, and bias, RMSE and credible interval (CI) coverage and width were examined for the
fixed treatment effects and the variance components.

The results of this study found that the different modeling methods in level-1 error
structure had little to no impact on the estimates of the fixed treatment effects, but substantial
impacts on the estimates of the variance components, especially the level-1 error standard
deviation and the autocorrelation parameters. Modeling between case variation in the level-1
error structure (Model 2) performs relatively better than not modeling between case variation in
the level-1 error structure (Model 1) for the estimates of the level-1 error standard deviation and
the autocorrelation parameters. It was found that as degree of the heterogeneity in the data (i.e.,
homogeneous, moderately heterogeneous, severely heterogeneous) increased, the effectiveness
of Model 2 increased.

The results also indicated that whether the level-1 error structure was under-specified,
over-specified, or correctly-specified had little to no impact on the estimates of the fixed
treatment effects, but a substantial impact on the level-1 error standard deviation and the
autocorrelation. While the correctly-specified and the over-specified models perform fairly well,

the under-specified model performs poorly.
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Moreover, it was revealed that the form of heterogeneity in the data (i.e., one extreme
case versus a more even spread of the level-1 variances) might have some impact on relative
effectiveness of the two models, but the degree of the autocorrelation had little to no impact on

the relative performance of the two models.
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CHAPTER ONE: INTRODUCTION

Single-case research measures an outcome repeatedly for a single case or small samples
which allow researchers to fully explore treatment effects (Kazdin, 2011). There is growing
interest in single-case designs due to many advantages that these designs offer. For example,
single-case designs provide information about not only the treatment effect for each individual,
but also individual variations in the treatment effect (Barlow, Nock, & Hersen, 2009), and they
also allow researchers to study population groups that have a low prevalence rate (Van den
Noortgate & Onghena, 2003a). In addition, using single-case designs allows practitioners to
implement research in their own setting which reduces the gap between research and practice
(Morgan & Morgan, 2001). There are a variety of single-case designs that are commonly used
(Kazdin, 2011; Shadish & Sullivan, 2011). In single-case designs, data are obtained before
implementing intervention (baseline phase) and after implementing intervention (treatment
phase). AB design is the most basic design that has a baseline phase and a treatment phase. The
additional designs include an extension of this design, such as an ABAB design that has more
phases for removal of the treatment and reintroduction of the treatment. There are other
alternative designs that are commonly used, such as the multiple baseline design that can be used
to study several cases at the same time.

Many methods have been developed to analyze single-case data. Traditionally, several
non-parametric and statistical methods have been proposed to analyze single-case data (e.g.,

visual analysis, nonoverlap statistics, and randomization tests); and more recently, regression
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based methods have been developed. Regression based analyses include single-level analyses,
such as ordinary least squares (OLS) and generalized least squares (GLS) regression, and multi-
level analysis, such as multilevel modeling (MLM).

Generally, in single-case studies, the errors are considered to be autocorrelated as
opposed to independent. It has been found that misspecification issues could arise if the possible
dependency of errors is not taken into account in the statistical model. It was found that positive
autocorrelation inflates Type I error rates in significance tests of the treatment effect when
autocorrelation is not taken into account (Matyas & Greenwood, 1990; Toothaker, Banz, Noble,
Camp, & Davis, 1983). For example, in the regression based models, the regression coefficients
are unbiased, but the standard errors of the regression coefficients would be underestimated,
which leads to confidence intervals that are too small (Neter, Wasserman, & Kutner, 1990).
Specifically, for the multilevel models, many researchers found that when level-1 errors are
assumed to be independent, it may bias the estimation of the standard errors of the fixed effects
and estimation of the random effects (Ferron, Dailey, & Yi, 2002; Kwok, West, & Green, 2007;
Sivo, Fan & Witta, 2005; Sivo & Willson, 2000).

There are several methods available which take autocorrelation into consideration.
Particularly, the GLS regression method and multilevel modeling can take autocorrelation into
consideration (Mcknight & Huitema, 2000; Maggin et al., 2011). However, studies have
demonstrated that GLS methods still produce high Type I error rates when applied to small
samples (e.g., Johnston, 1984; Huitema & Mckean, 1991; Solanas, Manolov, & Sierra, 2010).
Multilevel modeling is flexible for handling dependency of errors in that researchers are able to
model various dependent error structures and complex models (e.g., heterogeneity of variance,

and the nesting of cases within studies).
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There are several estimation methods available to run multilevel analysis of single-case
data, including restricted maximum likelihood (REML) and Bayesian methods. The REML
method is the most commonly used method to analyze multilevel models, and has been
implemented by several software procedures that allow easy access. However, the REML has
inferential and technical issues associated with analyzing complex multilevel models of single-
case data such as non-convergence with more complex models (Baek, Petit-Bois, & Ferron,
2012). The Bayesian method has the potential to resolve the issue with REML. It was found that
a complex multilevel model that fails to converge using REML can be run by using the Bayesian
approach (Baek, Petit-Bois, & Ferron, 2013). Studies in multilevel research have also found that
Bayesian methods have potential benefits over likelihood methods in that the Bayesian approach
could perform as well or better regarding bias, efficiency, and coverage (Browne, 2008; Baldwin
& Fellingham, 2013), and provide more accurate results in cases using small samples or unequal

sample sizes per subject (Shadish, Kyse, & Rindskopf, 2013).

Problem Statement

Although single-case researchers have recognized the misspecification effect of level-1
error structures on statistical inferences of multilevel models, researchers have overlooked how
they have made a critical assumption in their studies. They have generally assumed that the
level-1 error structure is constant across all cases. Past applications of multilevel modeling to
single-case data (e.g., Van Noortgate & Onghena, 2003a, 2003b) as well as methodological
studies of multilevel models with single-case data (Ferron, Bell, Hess, Rendina-Gobioff, &
Hibbard, 2009; Ferron, Farmer, & Owens, 2010) have assumed the level-1 error structure is the

same for all cases. It is possible that the error structure may not be same across cases (Baek &
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Ferron, 2011; Baek & Ferron, 2013). If great variation exists in the level-1 error structure, and it

is not taken into account, this can possibly impact the inferences of a study. Thus, it is important
to examine the consequences of not modeling and modeling between case variation in the level-1
error structure. Despite the importance of this issue, neither the effects of non-modeled between

case variation nor the performance of modeled between case variation in the level-1 error

structure have been systematically examined.

Purpose of the Study

The purpose of this simulation study is to extend the MLM modeling in single-case
design to allow between case variation in the level-1 error structure which allows the level-1
error and autocorrelation to vary across cases, and to identify the consequences of not modeling
and modeling between case variation in the level-1 error structure for single-case studies using
Bayesian estimation. Specifically, two level models where the level-1 error structures are
modeled different ways (i.e., not modeling between case variation vs. modeling between case
variation) will be examined in terms of the accuracy of estimates of parameters. More
specifically, credible interval coverage rates, credible interval widths, the bias of the point
estimates, and the root mean squared error (RMSE) will be investigated as functions of specific
design (number of cases and series length per case), and data factors (true level-1 error structure,
average level of autocorrelation, and variance of level-2 error). The following research questions

are of interest:
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Research Questions

1. What are the consequences of modeling and not modeling between case variation in the

level-1 error structure in terms of estimation of the fixed treatment effect in single-case

design?

1y

2)

to what extent are the bias and RMSE for the fixed treatment effects impacted as
a function of design factors (number of cases and series length per case), and data
factors (true level-1 error structure and variation at the level-2 error)?

to what extent are the credible interval coverage and width for the fixed
treatment effects impacted as a function of design factors (number of cases and
series length per case), and data factors (true level-1 error structure and variation

at the level-2 error)?

2. What are the consequences of modeling and not modeling between case variation in the

level-1 error structure in terms of estimation of the variance components in single-case

design?

1)

2)

to what extent are the bias and RMSE for the variance components impacted as
a function of design factors (number of cases and series length per case), and data
factors (true level-1 error structure and variation at the level-2 error)?

to what extent are the credible interval coverage and width for the variance
components impacted as a function of design factors (number of cases and series
length per case), and data factors (true level-1 error structure and variation at the

level-2 error)?
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Overview of the Study

Monte Carlo simulation methods will be used to address the impact of modeling and not
modeling between case variation in the level-1 error structure on inferences of two-level
multilevel single-case study using the Bayesian estimation approach. In the study, multiple data,
design and analysis factors will be manipulated. The data factors include three factors. These are
(a) true level-1 error structure (homogeneous, moderately heterogeneous, severely
heterogeneous); (b) variation in the level-2 errors (most of the variance at level-1 and most of the
variance at level-2). More specifically for the true level-1 error structure, the data set will be
generated in two ways where the level-1 error structure is constant across cases, referred to as the
Homogeneous error structure, and where the level-1 error structure is varying across cases,
referred to as the Moderate or the Severe heterogeneous error structure, depending on the degree
of severity in the generated data sets. There are two factors included in the design factors. These
factors are (a) number of cases (4 and 8); (b) series length per case (10 and 20). The analysis
factor addresses how to model the level-1 error structure (not modeling between case variation
(Model 1), and modeling between case variation (Model 2)) to analyze the Homogeneous, the
Moderate or the Severe heterogeneous error structures. Crossing all the factors creates a total of
48 conditions (see Table 1). The impact of the inferences will be made from the 95% credible

interval coverage, width, and the RMSE as well as the bias of point estimates.

Significance of the Study
This dissertation provides insights about how non- modeled and modeled between case
variation in level-1 error structure, a misspecification issue of the level-1 error structure, impacts

statistical inferences, an issue which has not been systematically explored. It could possibly
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influence the precision of estimation and the efficiency of inferences on single-case data. This
study also provides a way to model between case variation in level-1 error structure using

WinBUGS, making these created codes accessible to applied researchers for use in their own

research.
Table 1
Study design
True level-1 error structure
Moderately Severely
Homogeneous heterogeneous heterogeneous
Method to modeling the level-1 error structure
. Error Method Method Method Method Method Method
Series .
Number length variance 1 2 1 2 1 2
of cases (Most of
per case )
variance at )

4 10 Level-1
Level-2
20 Level-1
Level-2
8 10 Level-1
Level-2
20 Level-1
Level-2

Limitations

The data in this study will be simulated based on specific conditions. Those conditions
will be chosen based on a review of single-case literature. The specific conditions chosen for this
study are only some of the possible options. Therefore, the results of this study can only be
generalized to studies with similar conditions. Any conclusions beyond the observed conditions

should be interpreted with caution.
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Definitions of Terms

Autocorrelation. The degree to which errors from repeated measured data are correlated with
each other (dependency of the errors).

Bayesian estimation. A practical method for analyzing multilevel modeling that is known to take
into account the uncertainty of estimating both fixed effect and variance components by
using constructed prior distributions. Bayesian inference is the process of fitting a
probability model, given the observed data, and summarizing uncertainty of parameters
by a probability distribution (Gelman, Carlin, Stern, & Rubin, 2004).

Bias. The difference between a known parameter value (true value) and an estimated parameter
value.

Credible interval. Known as Bayesian confidence interval that is corresponding to the
confidence interval in general statistics.

Credible interval coverage. The proportion of 95% credible intervals that contain a true value for
the estimated parameter.

Credible interval width. The difference between the upper and lower limits of the 95% credible
intervals for the estimated parameter.

Fixed effects. Parameters that estimate average effects (e.g., average intercept, average treatment
effect) that are represented by regression coefficients in the multilevel model.

Hyperparameters. Parameters of prior distributions, not the direct parameters of the model.

Level-1 error. The difference between the observed values and predicted values of an outcome in
a case in multilevel single-case designs.

Level-1 error structure. A variance and covariance structure among the level-1errors..
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Multilevel modeling (MLM). A statistical model that accounts for nested data (e.g., students in
classrooms, repeated observations of students) or more than one level of the
parameters. It is also known as hierarchical linear modeling or random effects
modeling.

Prior distribution. A probability distribution represents the approximation about an unknown
parameter that is believed prior to observing the specific data.

Restricted maximum likelihood estimation (REML). A traditional estimation method to analyze
multilevel modeling. The rationale behind likelihood estimation is that the best way to
estimate a parameter is to find the value that allows the observed data most likely to
have occurred (Fienberg &Linden, 1997).

Root Mean Squared Error (RMSE). The square root of the average squares of the errors.

Series length. The level-1 sample size in the multilevel model, or the number of observations of a
case in a single-case study.

Single-case research. The intensive study that repeatedly measures a single case or small
samples to determine the effectiveness of one or more treatments.

Treatment effect. The change in a dependent variable attributed to a specific treatment.

Variance components. Parameters that estimate variation within cases and between cases.
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CHAPTER TWO: LITERATURE REVIEW

This literature review will be divided into four parts. First, single-case studies are
introduced, and a brief overview of the design and analysis is given. Next, level-1 error
structures and the effects of misspecification in level-1 error structures are described. Third, a
typical assumption that the level-1 error structure is constant across cases is addressed. Finally, a

method to model between case variation in level-1 error structures is suggested.

Single-Case Studies

Single-case research focuses on studying changes in an outcome over time. By measuring
an outcome repeatedly through time, single-case studies allow the direct study of changes within
individuals and the factors that influence changes. However, unlike other forms of longitudinal
research that gathers information from relatively large samples (> 30; Hox, 1998), single-case
research focuses on the study of a single case or small samples and its growth over time. Thus
single-case research can be defined as a study that repeatedly measures a single case over time to
examine the effectiveness of treatments (Kazdin, 2011).

In single-case designs, observations are obtained during at least two phases, one baseline
phase and one treatment phase. Phase is an important feature of the single-case design. When the
observations of the outcome occur before a treatment, it refers to a baseline phase. When the

observations of the outcome occur after a treatment, it refers to a treatment phase. By comparing
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outcome scores from both phases, single-case researchers can evaluate changes in the outcome
scores after introducing the treatment (Onghena & Edgington, 2005).

Interest in single-case designs has been growing in many areas of research, including
psychology, education, social science, counseling, and other disciplines (Barlow, Nock, &
Hersen, 2009; Franklin, Allison, & Gorman, 1997; Ittenbach & Lawhead, 1997; Kazdin, 2011;
Kratochwill, 1985; Wacker, Steege, & Berg, 1988) because they have several advantages over
other designs. Single-case design allows researchers to investigate the effect of intervention for
each individual by providing information about individual treatment effects and variation of the
treatment effects among cases. This type of information is difficult to capture using group
comparison designs where the focus is the average treatment effect (Barlow, Nock, & Hersen,
2009). In addition, because only a small sample size is needed, single-case studies allow
researchers to study populations of people that have a low prevalence rate (e.g., children with
autism) that are difficult to study with large sample based designs (Van den Noortgate &
Onghena, 2003a). There are more benefits to using single-case designs. By using single-case
designs, researchers can reduce the gap between research and practice because practitioners can
implement research in their current setting (Morgan & Morgan, 2001). Finally, this type of
design also allows researchers to design an experimental condition within a case by measuring
outcome variables prior to the treatment and after the treatment. This feature makes it feasible for

the case to provide its own control for the comparison.

Type of Single-Case Design
There are several commonly used single-case designs, such as an AB design, an ABAB

design, and a multiple-baseline design (Kazdin, 2011; Shadish & Sullivan, 2011). The AB design

11
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is one of the basic designs that has a baseline phase (A) and a treatment phase (B). By comparing
outcome scores from the baseline phase and the treatment phase, the treatment effect (changes in
the outcome scores between the baseline and the treatment phase) can be evaluated. Figure 1

illustrates a visual display of the basic AB design.

Baseline (A) Treatment (B)
60

50

N /\\/
30
20

10/\/

Figure 1. AB design

There is a criticism to using the basic AB design. When using the AB design, it is
difficult to conclude that a change of outcome between a baseline and a treatment phase is solely
due to a treatment and not due to some external factors which could have occurred at the same
time (Ferron & Rendina-Gobioff, 2005). For example, in a case that a researcher finds that the
reading score of a child increases after implementing a new reading treatment using an AB
design, the researcher may conclude that the new reading treatment is effective in improving
reading performance. However, the improvement of the reading performance may be due to
natural growth of learning, or due to academic assistance at home from the parent of the child
that occurs at the same time that the treatment occurs. Thus, there is a limitation in examining the

true effect of the treatment by using the basic AB design. This limitation can be partially
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overcome by applying more complex designs, such as an ABAB design or a multiple baseline
design.

The ABAB design is an extension of the AB design. The ABAB design consists of four
phases, two baseline phases and two treatment phases. It has observations of an initial baseline
phase (A), followed by observations of an initial treatment phase (B), then observations of a
second baseline phase (A), followed by observations of a second treatment phase (B). A
treatment is introduced in the initial treatment phase like the AB design, and then the treatment is
withdrawn in the second baseline phase and reintroduced in the second treatment phase. A
second treatment phase provides the opportunity to demonstrate the performance of the initial
treatment phase in that the observed performance pattern of the second treatment phase should
replicate the performance change shown in the initial treatment phase. Figure 2 shows a visual

display of the ABAB design.

Baseline (A) Treatment (B) Baseline (A) Treatment (B)
60

50 e SN ~
40
30

20

10 —~—uo_~ T

1 3 5 7 9 11 13 15 17 19 21 23 25
Figure 2. ABAB design

There is an ethical or practical concern for using the ABAB design due to the fact that the

treatment should be withdrawn (Kazdin, 2011). Researchers may expect that the behavior will
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revert toward baseline levels when the treatment is withdrawn which is required to demonstrate
the treatment effect. However, in some cases, the treatment effect might be permanent, or
maintained after treatment is withdrawn. For example, in an educational setting, once learning
occurs after introducing a treatment, it is hard to remove and might be maintained even after
withdrawing the treatment.

Another type of extension of the AB design is a multiple-baseline design. Multiple-
baseline designs have a baseline phase and a treatment phase that is established for multiple
cases. The treatment is introduced to different cases at different points in time so that the
initiation of the treatment phase can be staggered across time for the different cases. If changes
occur for each baseline when the treatment is introduced, then the treatment effects can be more
likely to be attributed to the treatment, not to extraneous events (e.g., history or maturation)
(Ferron & Rendina-Gobioff, 2005; Kazdin, 2011). Another benefit of the multiple-baseline
design is that the treatment does not need to be removed once the treatment is introduced. This
benefit allows researchers to avoid the practical or ethical issues commonly encountered when
removing the treatment in the ABAB design. Figure 3 illustrates a visual display of the multiple-
baseline design.

Although multiple-baseline designs have some advantages over other designs, there is a
limitation due to the potential dependence among cases. In multiple- baseline designs, baselines
can be interconnected in that change in a behavior for one case carries over to other cases where
the treatment has not been introduced (e.g.,Whalen, Schreibman, &Ingersoll, 2006; Watson ,
Meeks, Dufrene, & Lindsay, 2002). For example, in the multiple-baseline design across
individuals, it is plausible that changes in the behavior of an individual who has received a

treatment could impact the behavior of another individual who has not received the treatment.
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This can occur more likely in school or home settings where a child or sibling can usually

observe the behavior changes of other children or siblings.
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Figure 3. Multiple baseline design
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Analysis of Single-Case Design

Several methods to analyze single-case design data have long been developed. These
methods can be categorized with four groups: (1) visual analysis, (2) overlap statistics, (3)
randomization tests, and (4) regression based analyses.

Visual analysis. Visual analysis has been historically the most commonly used analysis
method (Kazdin, 2011; Parsonson & Baer, 1992). Visual analysis is conducted to examine
treatment effects by visually inspecting graphed data (Kazdin, 2011). This analysis is intended to
focus on a potent treatment effect that can be obviously observed by graphed data. Therefore, it
has been argued that researchers who typically use visual analysis tend to be more conservative
when evaluating a treatment effect. This can lead the researchers to commit fewer Type I errors
but more Type II errors than those who primarily use statistical analyses (Parsonson & Baer,
1986; Kazdin, 2011).

However, several studies have found that using visual analysis is not as conservative as
previously thought, and several factors can influence a judgment of treatment effects examined
by visual analysis (DeProspero & Cohen, 1979; Fisch, 2001; Jones, Weinrott, & Vaught,1978;
Matyas & Greenwood, 1990; Wampold & Furlong, 1981). For example, Matyas and Greenwood
(1990) found that visual analysts tend to make high Type I error rates, and relatively low Type 11
error rates. Fisch (2001) also found that trained behavior analysts often misreport treatment
effects when a visual graph of data displayed no treatment effects (Type I error). In order to
handle the issue of accuracy raised in visual analysis, several methods such as training,
structured criteria and response-guided modification have been suggested (Hogaopian et al.,
1997; Ferron, & Jones; 2006; Fisher, Kelley & Lomas; 2003; Parsonson & Baer, 1992). By using

these methods, it was demonstrated that the accuracy of visual analysis as well as agreement
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among visual analysts can be improved (Ferron, & Jones; 2006; Fisher et al., 2003; Hagopian et
al., 1997).

However, many researchers have still suggested that it is more valuable to use visual
analysis along with other statistical models when evaluating more complex data that have
variability in baselines, trends, and complex error structures (Barlow, Nock, & Hersen, 2009;
Ferron, & Jones; 2006; Kazdin, 2011).

Nonoverlap statistics. A number of nonoverlap statistics can be utilized in order to
describe an overall size of a treatment effect. The underlying rationale for these statistics is to
consider nonoverlapping data as an indicator of performance differences between baseline and
treatment phases (Sidman, 1960). The extent to which data overlap between baseline and
treatment phases can be quantified as the percentage of non-overlapping data (PND; Scruggs,
Mastropieri, & Castro, 1987), percentage of all non-overlapping data (PAND; Parker, Hagan-
Burke, & Vannest, 2007), and percent exceeding the median (PEM; Ma, 2006). Nonoverlap
methods have some strengths in that they don’t require an assumed parametric model (Armitage,
Berry, & Matthews, 2002).

Despite these strengths, several weaknesses are more often addressed. Parker and
Vennest (2009) indicate these weaknesses for the previously listed three nonoverlap indices.
They claim that (a) PND has a lack of a known underlying distribution that limits building
confidence intervals, (b) PEM has issues of a weak relationship with other effect sizes, (c) PEM
and PND are hardly able to discriminate among published studies, and (d) all three indices have
also an issue of human error from hand calculations of the graphed data. Recently, new indices
have been developed to overcome these weaknesses. Nonoverlap of all pairs (NAP; Parker

&Vannest, 2009), and Tau-U (Parker, Vannest, Davis, & Sauber, 2011) have been suggested as
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alternative nonoverlap indices that potentially overcome some of the weaknesses of the
traditional nonoverlap indices.

Randomization tests. Randomization tests can also be used to test the effectiveness of a
treatment for single-case studies. This method allows single-case studies to be experimental
designs by randomly assigning measurement occasions to the baseline or treatment phase
(Onghena & Edgington, 2005). The logic behind these tests is that if there are no treatment
effects on an outcome, the observations should not be influenced by random assignment of
measurement occasions to the baseline or treatment, and therefore, the same scores of the
outcome will be found regardless of the treatment assignment (Barlow, Nock, & Hersen, 2009).
Based on assuming this null hypothesis is true, a randomization distribution is formed in a
randomization test. Randomization tests are not driven by theoretical distributions. They only
utilize available sample data to create a randomization distribution. This distribution is formed
by rearranging the data to consider all permutations —one rearrangement for each of the possible
random assignments. By comparing an obtained test statistic to the randomization distribution,
the null hypothesis can be tested (Barlow, Nock, & Hersen, 2009).

There are several benefits to using randomization tests to analyze single-case data. The
use of an experimental design with randomization tests can improve both internal validity and
statistical conclusion validity of the study by controlling extraneous variables related with natural
growth or history. In addition, several studies show that the presence of a treatment effect can be
examined while controlling Type I error rates by incorporating a randomized component in
single-case design (Edgington, 1980; Ferron & Jones, 2006).

However, there are several drawbacks of this method. A limitation of this method is that

it only provides inferences about the presence of a treatment effect. It does not provide
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inferences about the form of the effect (i.e., change in level and change in trend) or the size of
the effect (Morgan & Morgan, 2001; Onghena & Edgington, 2005). Another concern relates to
statistical power. It was found that power for randomization tests can be influenced by many
factors, such as design types, effect sizes, series lengths, and forms of randomization which in
turn, make it difficult to estimate the power of randomization tests (Ferron & Ware, 1995; Ferron
& Onghena, 1996; Onghena & Edgington, 2005).

Regression based analyses. Regression analyses have been proposed as methods that
are able to capture both changes in level and changes in trend in single-case data. Regression
methods can be categorized based on the number of levels allowed in the analysis: (1) single-
level analysis for one case, and (2) multilevel analysis for multiple cases.

Single-level analysis. Single-level analyses are simple regression types of analyses
including ordinary least squares regression and generalized least squares regression. Ordinary
least squares (OLS) regression was first suggested (Center, Skiba, & Casey, 1985-1986; Huitema
& McKean, 1998) as a single-level regression method to analyze a single-case. This OLS
regression can be illustrated by the following regression model:

Yi =Po+ pr phase + e (D
where y; is the observed value at the /™ point in time, £ is an average of the baseline phase,
phase is a dummy variable with O for the baseline phase and 1 for the treatment phase, £, is the
mean difference between the baseline and the treatment phase which indicates the treatment
effect, and e; is the error at the /™ point in time. This simple regression model can be expanded to
include more variables to capture trends in phases (e.g., Center, Skiba, & Casey, 1985; Huitema

& McKean, 2000). The use of OLS regression methods has raised concern that errors in the
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statistical model are considered to be independent as opposed to dependent (autocorrelated) (e.g.,
Kratochwill et al., 1974; McKnight, McKean, & Huitema, 2000).

Some alternative approaches have been suggested to resolve the dependency of the
errors, autocorrelation, in single-case data. Generalized least squares (GLS) regression is one of
the alternative single-level analyses that can handle the autocorrelated errors (Cochrane &
Orcutt, 1949; McKnight, McKean, & Huitema, 2000; Simonton, 1977; Solanas, Manolov, &
Sierra, 2010). The GLS regression shares a similar statistical framework with the OLS
regression, but unlike OLS regression, the autocorrelation among the errors can be estimated and
taken into account for the analyses (Maggin et al., 2011). More explicit explanation about
autocorrelation has been provided in a later section (see the Level-1 Error Structure section).

Multi-level analysis. In recent years, multilevel modeling (MLM) has been suggested as
an alternative method to the single-level model to analyze single-case data (e.g., Nugent,1996;
Shadish & Rindskopf, 2007; Shadish, Rindskopf, & Hedges, 2008; Van den Noortgate &
Onghena, 2003a, 2003b, 2007, 2008; Baek et al, 2013).

Multilevel modeling provides great flexibility which is considered as a potential
advantage of using multilevel modeling over single-level analyses. Multilevel modeling can
provide more detailed information regarding the treatment effects than single-level models
because in addition to individual treatment effect estimates, they also provide an estimate of the
average treatment effect, and the variability of treatment effects across cases. In addition, since
multilevel analyses can provide empirical Bayes estimates, person specific estimates of short
series from multilevel analyses can be more reliable than the estimates from single-level analyses
(Raudenbush & Bryk, 2002). Moreover, multilevel models can handle a variety of modeling

issues that may arise in single-case studies (e.g., the modeling of possible dependency, linear or
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nonlinear trends, and count outcomes) (Van den Noortgate & Onghena, 2003a). Thus, this
flexible modeling approach can provide more in-depth information regarding inferences of the
study.

A basic two-level multilevel model for single-case studies (e.g. an AB design), assuming
no time trends during the baseline and treatment phase, is shown in equations 2 and 3. Equation
2 is for the first level of the multilevel model, which is comparable to the OLS regression model.

Yii = Poj + P Phase; + e; 2
Boj = 6000 + ug 3)
Bii =010+ uy
yy is the observed value (outcome) at the i™ observation for the /" case. fy; is the baseline
intercept for the j/ case, and Phase;; is a dichotomous variable that indicates the phase in which
the observation occurred, being 0 indicates the baseline phase and 1 indicates the treatment
phase. fj; is the difference between the baseline level and the treatment level (shift in level) for
the /™ case which indicates a treatment effect. e; is residual that indicates within case variation
(level-1 error). Equation 3 is for the second level of the multilevel model which can allow
variation in the baseline intercept and the shift in level across cases. 6y is the average baseline
intercept, @ ;o is the average shift in level, and u) and u;; are errors for the average baseline
intercept and the average shift in level across cases. uy; and u;; are assumed to be multivariate
normally distributed N(0,%,).
This basic model can be extended to include slopes in the baseline and the treatment
phase. Equation 4 is the first level of the extended model that includes the Time; variable as an
indicator of the slope. By is the baseline intercept for the ™ case and f3 1 18 the difference

between the baseline level and the treatment level (shift in level) for the jth case when Time;;
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equal to 0. f3; as the baseline slope for the ™ case, and 8 3; as the change in slopes between the
baseline and the treatment phase (shift in slope).

Yii = Poi + P Phasey + By Timey + B3 Time; *Phase;; + e; (4)

Boj = Ouo + uo; )

Bii =010+ uyj

P =020+ uy;

Bsi =030 + us
Equation 5 is the second level of the extended model that allows variation across cases in the
baseline intercept, the baseline slope, the shift in level, and the shift in slope. 6y is the average
baseline intercept and 6 ; is the average shift in level at Time;; equal to 0, 6, is the average
baseline slope, and 6 3 is the average shift in slope. ug; , u;; , us; and us; are errors in the second
level equation.

Although several advantages exist, some concerns involving the use of multilevel models
also exist regarding assumptions. In order to make valid inferences of multilevel models, several
assumptions need to be met. For example, the variance in the baseline phase and in the treatment
phase is assumed to be equal, and the level-1 variance is also assumed to be equal for all the
cases. However, it is difficult to test the violation of these assumptions prior to conducting the

analyses, particularly with the single-case data that have typically small sample sizes.

Level-1 Error Structures
As mentioned previously, the errors in the first-level model (eij) in equations 1, 2, and 4

are within case errors that indicate the discrepancy between the observed values and predicted
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values of outcome from an individual’s growth trajectory. Several assumptions regarding the
within case errors (or level-1 errors) have to be taken into account when we use regression based
methods to analyze the data. Errors are assumed to have covariance X, and they are both
identically and normally distributed. Various error structures can be assumed for the covariance
Y. It can be assumed as either having an independent error structure or having an autocorrelated
structure. In the following sections, autocorrelation in single-case design is introduced and then it
is explained how the covariance Z, can be modeled in single-level and multilevel models using
the autocorrelation. Some issues which arise when misspecifying the level-1 error structures are

also discussed.

Autocorrelation in Single-Case Design

Many researchers have argued that the observations from single-case design may yield
positive autocorrelations (Busk & Marascuilo, 1988; Huitema, 1985; Huitema & McKean, 1998;
Matyas & Greenwood, 1996). Since an outcome is measured repeatedly across time in a single-
case study, it is possible level-1 errors produced by these repeated measurements may be more
similar when they are close in time which leads to dependency in the errors, or autocorrelation. A
number of non-modeled factors (e.g., illness, moving to a new school) could affect the level-1
errors that indicate discrepancy between actual observed outcome values and predicted outcome
values from an individual’s growth trajectory. If the non-modeled factors affect the sequential
errors that are close in time, then the errors may be more similar at close points in time. For
example, a growth trajectory of reading achievement for a child may show a constant increasing
trend. Actual observations of the child, however, may deviate from this trajectory due to a non-

modeled factor such as illness of the child. She might feel tired and sick; that could affect an
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observation of reading achievement. The sickness of the child is more likely to affect the next
couple or more sequential observations. In this case, the errors that were closer in time would be

more similar, which leads to positive autocorrelation.

Level-1 Error Structures in Single-Case Design

There are a number of possible level-1 error structures Z, that can be modeled in single-
case design. Level-1 error structures can be modeled as being autocorrelated or as independent in
single-case data analysis. The independent error structure is a fairly simple structure compared to
autocorrelated error structures. Variance components (VC) or Identity structure (ID) is the
simplest error structure and assumes the errors are independent of each other. There are various
error structures that assume the errors to be autocorrelated. These error structures include
unstructured, compound symmetry, banded toeplitz or moving average, first-order
autoregressive [AR(1)], AR(1) plus a diagonal, AR(1) plus a common covariance, and an AR(1)
generalization for unequally-spaced observations (Goldstein, 1995; Goldstein, Healy, &
Rasbash, 1994; Heitjan & Sharma, 1997; Jennrich & Schluchter, 1986; Ware, 1985; Wolfinger,
1993; Yang & Goldstein, 1996). The recognition that autocorrelation may exist among the level-
1 errors leads autocorrelated error structures to be utilized more often in single-case data
analysis. Figure 4 illustrates examples of the level-1 error structures generally used for single-
case data analysis. Identity structure (ID) contains a single parameter (¢°) on the main diagonal
of a diagonal matrix that assumes no correlation between any pair of random errors (Raudenbush
& Bryk, 2002). This oversimplified structure is very unlikely to be true in repeated measures
data (Goldstein, Healy, &, Rasbash, 1994). First-order autoregression [AR(1)] structures are

composed of two parameters, o” and p, and p represents the autocorrelation coefficient. The
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correlations between two errors that are separated by one, two, three, and » points in time are
represented by p, p°, p’, and p", respectively. First-order autoregression and first-order moving
average [ARMA(1,1)] has the same two parameters (¢ , p) as AR(1) has and the moving average
coefficient (r). This structure contains o on the main diagonal to represent error variance, and
the correlations between two errors that are separated by one, two, three, and n points in time
represent by r, v p, r pz, and r p", respectively. Second-banded Toeplitz [TOEP(2)] contains two
parameters, o’ and ¢, and g, represents constant covariance between two errors that are
separated by one point in time. This error structure assumes the errors that are separated by more

than one point in time are not correlated, which means zero correlation.

ID AR(1) ARMA(1,1) TOEP(2)
o> 0 0 0 1 p p* P 1 r rp rp’ o> o 0 0
0 o> 0 0 e 1 p p Jr 1 or o rp o, ¢’ o 0
o o
0 0 o> 0 P p 1 p o r 1 r 0 o o o
0 0 0 o° o pop 1 o> rp o1 0 0 o o

Figure 4. Examples of the level-1 error structures used in single-case data analysis

Misspecification Issues of Level-1 Error Structures in Single-Case Design

When the existing autocorrelation is not modeled in the analysis, it can lead level-1 error
structures to be misspecified. Research has shown significant impacts of misspecifying level-1
error structure on statistical inferences. These misspecification issues of level-1 error structure
arise for both single-level and multilevel analyses.

Single-level model. In single-level model analyses, much research shows that positive
autocorrelation inflates Type I error rates in significance tests of the treatment effect when the

autocorrelation is not taken into account (Matyas & Greenwood, 1990; Toothaker, Banz, Noble,
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Camp, & Davis, 1983). More specifically, under a general linear model like OLS regression, the
positive autocorrelation can lead the regression coefficients to be unbiased, but the standard
errors of the regression coefficients to be underestimated which implies inflated t-values. As a
result, 95% confidence intervals tend to be too small and significance tests of the treatment effect
tend to be liberal (Neter, Wasserman, & Kutner, 1990). Typically, as the level of autocorrelation
increases, the degree to which confidence intervals and significance tests are impacted increases.
The impact of positive autocorrelation has been also demonstrated with various series lengths
and patterns of autocorrelation (Beretvas & Chung, 2008; Greenwood & Matyas, 1990; Huitema,
McKean, & McKnight, 1999; Scheffé, 1959; Toothaker, Banz, Noble, Camp, & Davis,1983).
Some efforts have recently been made to resolve this issue by using the GLS regression
method. GLS regression requires two steps to account for autocorrelation in the analyses. The
autocorrelation can be first estimated from the errors of the initial fit of the linear model, and
then can be included in the analyses to refit the linear model (Mcknight, Meckean & Huitema,
2000; Maggin et al., 2011). There are several methods that are available to estimate the
autocorrelations under the GLS regression approaches, such as Simonton (Simonton,1977),
Cochrane-Orcutt (Cochrane-Orcutt, 1949), and Paris-Winsten (Paris-Winsten,1954) versions of
GLS (McKnight, McKean, & Huitema, 2000; Solanas, Manolov, & Sierra, 2010). However,
studies have demonstrated that GLS methods still produce high Type I error rates when applied
to small samples (e.g., Johnston, 1984; Huitema & Mckean, 1991; Solanas, Manolov, & Sierra,
2010). McKnight, McKean, and Huitema (2000) found that a double-bootstrapping procedure
under the GLS regression can improve the accuracy of the parameter estimates as well as
autocorrelation estimates and control Type I error rates. Their Monte Carlo simulation study

shows that the bootstrap bias-adjusted method estimates of the autocorrelation are substantially
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less biased than initial estimates of the autocorrelation obtained by other traditional GLS
methods (i.e., Cochrane-Orcutt, and Paris-Winsten). Type I error rates for all parameter estimates
using the bootstrap bias-adjusted method are close to the nominal level, less than .05. In addition,
Maggin et al. (2011) proposed applying the Bayesian estimation approach under the GLS
regression method to compute effect sizes for single-case data. This method is particularly
applicable to small-sample time-series data with autoregressive errors. They recommend the use
of the GLS method as a support for visual analysis. However, sufficient empirical evidence has
not yet been gathered for this method.

Multi-level model. Multilevel modeling (MLM) is another method that allows the
possible dependency of the observations to be taken into account, and has been used as an
alternative method for analyzing single-case data (Nugent, 1996; Shadish & Rindskopf, 2007;
Shadish, Rindskopf, & Hedges, 2008; Van den Noortgate & Onghena, 2003a, 2003b, 2007,
2008). The flexibility of the multilevel approach makes it possible not only to allow for
dependent error structures, but also to allow the covariance parameter values to differ across
cases. By using this approach, researchers can model the variety of error structures described in
the previous section.

Misspecifying the level-1 error structure in MLM analyses has also been found to bias
estimates of the parameters (Ferron et al., 2009; Ferron, Dailey, & Y1, 2002; Guerin & Stroup,
2000; Kwok et al., 2007; Sivo, Fan, & Witta, 2005; Sivo & Willson, 2000). For example, Ferron
et al. (2009) conducted a Monte Carlo simulation study to examine the utility of multilevel
models for multiple baseline design of single-case data. They found that the fixed effect estimate
of the average treatment effect was relatively unbiased, regardless of whether the level-1 error

structure was correctly specified or not. However, they indicated that the confidence interval
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coverage of the treatment effect was less accurate and estimates of the variance components
tended to be more biased when level-1 error structure was misspecified. Ferron, Dailey and Yi
(2002) also studied the effect of the misspecified level-1 error structure using a parsimonious
covariance structure (ID) rather than the true structure [AR(1)] in MLM analyses. In their
simulation study, they found that the estimates of the fixed effects were unbiased but the
estimates of variance parameters were substantially biased when the level-1 error structure was
misspecified for all conditions (i.e.,variety of series lengths, sample sizes, and levels of
autocorrelation). Specifically, both variance in the intercept and the slope (level-2 variance)
were overestimated; the level-1 error variance was underestimated. Kwok and his colleagues
(2007) studied the impact of broader types of misspecifying the level-1 error structure in
repeated measured data analysis under the multilevel model framework. Their simulation results
implied the impact of misspecification of the X, matrices were more likely to result in
overestimation in random effects, when parsimonious covariance structures were used, and
underestimation in random effect variances when other types of misspecification occurred.
Furthermore, using parsimonious covariance structure resulted in overestimation of the standard
errors in the fixed effect, which resulted in lower statistical power relative to the correct
specification. Recently, Petit-Bois (in press) investigated the effects of various types of
misspecifications of the level-1 error structure when using a three-level meta-analytic single-case
model. She found consistent results from the previous studies. Her simulation results indicate
that misspecification of the level-1 error structure has little or no impact on the treatment effects,
but, it has significant impact on the variance components. Specifically, the estimates of error

variances and autocorrelation were more biased; confidence interval coverage for the level-2 and
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level-1 error variance, and autocorrelation tended to be small, and confidence interval width
tended to be large for some cases.

Overall, previous research for both single-level and multilevel models implies that
misspecification of level-1 error structure has little to no impact on the point estimates of the
fixed effects, but it has a significant impact on the corresponding standard errors of the fixed
effects. These impacts can lead to lower statistical power of the inferences. Moreover,
misspecification of level-1 error structure leads to significant bias on random effect estimation.
Depending on the types of the misspecification, it was more likely to be either overestimated or
underestimated. Thus, single-case researchers should inspect for the presence of the
autocorrelation in their data, and consider modeling autocorrelation if it presents in their data. By
doing this, they can avoid possible misspecification on the level-1 error structure (Barlow, Nock,
& Hersen, 2009; Kazdin, 2011). If there is uncertainty about the level-1 error structure, it is
generally recommended to avoid an overly parsimonious error structure (i.e., ID) (Ferron,
Dailey, & Yi, 2002), and to consider using a slightly over-specified model (e.g., TOEP(2) or

AR(1)) (Kwok et al., 2007).

Assumption of Between Case Homogeneity in Level-1 Error Structures

Although multilevel modeling allows autocorrelation among level-1 errors to be taken
into consideration in single-case data analyses, this approach still holds a critical assumption that
the level-1 error structure is the same for all cases. Specifically, it is assumed that (a) the degree
of autocorrelation is the same for all cases and (b) the level-1 error variance is the same for all
cases. Previous single-case research using multilevel modeling application as well as

misspecification research of level-1 error structures has often assumed the autocorrelation and
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level-1 error variance to be equal for all cases (Ferron et al.,2009; Ferron, Farmer, & Owens,
2010; Van Noortgate & Onghena, 2003; Kwok et al., 2007).

However, it is possible that this assumption may not be true all the time. The
autocorrelation and level-1 error variance may vary across cases. Level-1 errors could be
attributed by measurement errors, and the differences of measurement errors across cases can
lead the level-1 error variances to vary. For example, differences in mood, motivation, and
fatigue among cases are some of the sources causing measurement error. The measurement error
caused by these personal related factors is likely to be different across cases, and this could lead
the level-1 error variances to vary. The findings from previous studies of level-1 error structures
in single-case data support that variations in level-1 error structures could exist (Baek & Ferron,
2011; Baek & Ferron, 2013). Baek and Ferron (2013) discovered relatively large differences
found in terms of estimates of autocorrelation and level-1 error variances, after estimating level-1
errors separately for each case. In the study, five single-case data sets from published papers
were selected and reanalyzed separately using a two-level multilevel model with varying error
structures across cases. The results of the analyses found substantial differences in terms of the
autocorrelation [AR(1)] estimates among the cases in all five studies. For example, in one study,
the autocorrelation ranged from -.04 to .46 when estimated separately for each case, while it was
estimated to be .22 when estimated to be constant across cases. The study also found that level-1
error variance estimates were substantially different across cases in all five studies. For example,
in one study the error variance ranged from 164.41 to 795.62 when estimated separately for each
case, while it was estimated to be 269.54 when estimated to be constant across cases.

If the variation which exists in a level-1 error structure is not taken into consideration, it

can conceivably impact the inferences of the study for both fixed effects and random effects.
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Thus, it is critical to examine the consequences of different modeling approaches (modeling and
not modeling between case variation) in the level-1 error structure. Despite the importance of
this issue, the effects of the different approaches to modeling the level-1 error structure has not

been systematically studied.

Modeling Between Case Variation in Level-1 Error Structures

The two level model that allows between case variation in the level-1 error structure in
single-case design can still be represented by the Equations (4) and (5). In Equation (4), ejj
represents level-1 errors, and the covariance structure ) , of the errors can be assumed as any of
the error structures being autocorrelated or being independent that have been introduced
previously.

When we model between case variation in the level-1 error structure, the covariance
structure ) . is assumed to be one of the autocorrelated covariance structures, and is allowed to
vary across cases. More specifically, autocorrelation and level-1 error variance are estimated
separately for each case; therefore, every case is allowed to have a unique autocorrelation and
level-1 error variance value. The following example illustrates three different ways of modeling
level-1 covariance structure ) . Assume that there are single-case data with three cases. The
simplest way to model the covariance structure ) . is to assume it to have an independent
structure (ID). Assume the level-1 error variance is estimated as 35, and held constant across

cases. This is illustrated in Figure 5.
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Figure 5. ) .1is assumed to be ID and held constant across three cases

Another way of modeling ) . is assuming it to have one of the autocorrelated error structures.

Assume that the first-order autoregressive structure [AR(1)] is assumed for the covariance

structure ) .. When the covariance structure ) . is held constant across cases with the

autocorrelation and the variance of level-1 error being estimated as .2 and 30, respectively, these

values apply for all three cases. This is illustrated in Figure 6.
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Figure 6. ) .is assumed to be AR(1) and held constant across three cases

Those two ways of modeling ) . are traditional ways that are often modeled for the single-case

analysis. For the proposed approach where the covariance structure ) . is allowed to vary across

cases, the autocorrelation and the variance of level-1 error will be estimated with as many values

as cases. An example of this approach is illustrated in Figure 7. As you see in Figure7, each case

has unique autocorrelation and variance when between case variation is modeled for the level-1

error covariance structure.
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Figure 7. Y .is assumed to be AR(1) and allowed to vary across three cases

Estimation Methods

Restricted maximum likelihood (REML) estimation. The traditional estimation
method to run the three specified models is restricted maximum likelihood (REML) estimation
(Patterson & Thompson, 1971; Kenward & Roger, 1997, 2009). This estimation method has
been historically and commonly utilized to analyze multilevel models. It has become a standard
of variance component estimation in MLM and has provided computation advantages in that it is
relatively fast and automated by many software programs (e.g., HLM, MLwiN, SAS, SPSS, R,
and Stata). The rationale behind likelihood estimation is that the best way to estimate a parameter
is to find the value for which the observed data were most likely to have occurred (Lynch, 2007).

The REML estimation has been commonly used to estimate the traditional models in
many single-case applications (e.g., Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009;
Ferron, Farmer, & Owens, 2010; Van Noortgate & Onghena, 2003a). Generally, it has been
found that the REML method used to estimate multilevel models in single-case data produces
correct inferences for fixed effects by adjusting standard errors and degrees of freedom
(Kenward & Roger, 1997, 2009), but produces biased variance components. Several
methodological research studies of single-case also support these findings (Ferron, Bell, Hess,

Rendina-Gobioff, & Hibbard, 2009; Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate,
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2013a, 2013b; Owens & Ferron, 2012). Specifically, Monte Carlo simulation studies suggest that
using REML to estimate a variety of multilevel models and data conditions for single-case data
leads to: (1) unbiased fixed effects (i.e., treatment effect) regardless of sample sizes, (2) accurate
confidence intervals for the fixed effects (average treatment effect) regardless of sample sizes, as
long as Kenward-Roger or Satterthwaite methods are used for the degree of freedom estimates,
and (3) biased variance estimates particularly with small sample sizes.

However, for the proposed model where the covariance structure ) . is allowed to vary
across cases, using the REML estimation has raised a technical issue (Baek, Petit-Bois, &
Ferron, 2012). The estimation can be computationally intensive since the level-1 error structure
should be estimated for each case. It turns out that as the number of cases increases, the number
of parameters increases, and that leads to non-convergence issues. For example, in a recent study
of single-case studies (Baek, Petit-Bois, & Ferron, 2012), the multilevel meta-analytic model of
single-case data was extended to allow the autocorrelation [AR(1)] and error variance to vary
across studies and cases using REML estimation. In this analysis, convergence criteria were not
met when the level-1 error structure was allowed to vary across studies or cases. Thus, in order
to apply the proposed idea of allowing between variation in level-1 error structure, it is necessary
to use an alternative estimation approach that can solve the convergence issue.

Bayesian estimation. Bayesian estimation can be one of the alternative estimation
methods to handle the convergence issue. Bayesian estimation method has been considered as a
practical method for analyzing data for many areas such as education, social science,
psychology, and medical decision making (Lindley & Smith, 1972; Gelman, Carlin, Stern, &
Rubin, 2004). Bayesian inference is the process of fitting a probability model, given the observed

data, and summarizing uncertainty of parameters by a probability distribution (Gelman, Carlin,
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Stern, & Rubin, 2004). This method incorporates existing information into the analysis by
constructing prior distributions using the existing information (e.g., Howard, Maxwell, &
Fleming, 2000). Bayesian estimation can take into account the uncertainty of estimating both
fixed effects and variance components by using these constructed prior distributions (Gelman,
2002; Gelman, Carlin, Stern, & Rubin, 2004).

Bayesian estimation methods are well known for their benefits of analyzing social
science data (e.g., Gelman & Hill, 2007; Howard, Maxwell, & Fleming, 2000; Kruschke, 201 1a,
2011b; Lynch, 2007; Yuan & MacKinnon, 2009). They have great flexibility to construct
hypothesis tests and interval estimates, and they also have a benefit to estimate parameters in
special cases (e.g., non-normal sampling distributions). Bayesian estimation can also handle
inferential and technical challenges of using likelihood estimation in multilevel analysis
(Gelman, Carlin, Stern, & Rubin, 2004; Shadish, Rindskopf, & Hedges, 2008; Shadish &
Rindskopf, 2007). Studies in multilevel analyses have found that Bayesian methods perform as
well or better than likelihood methods regarding bias, efficiency, and coverage (Browne, 2008;
Baldwin & Fellingham, 2013). For the multilevel single-case research, the Bayesian approach
could provide more accurate results when using small samples or unequal sample sizes per
subject (Shadish, Kyse, & Rindskopf, 2013). Convergence issues could also be resolved by
using Bayesian estimation methods (Baek, Petit-bois, & Ferron, 2013). Bayesian methods are
capable of performing with computationally intensive cases by using Markov Chain Monte Carlo
(MCMC) procedures (e.g., Chen & Shao, 1999; Cowles &Carlin, 1996; Gelman, Carlin, Stern, &
Rubin, 2004; Gilks, Richardson, & Spiegelhalter, 1996; Tierney, 1994). Baek, Petit-bois, and
Ferron (2013) found that more complex multilevel models of single-case data, which failed

previously using REML, can reach convergence using the Bayesian estimation method. Bayesian
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estimation can also be implemented by a variety of software programs, such as MLwinN, R,
SAS, and WinBugs.

Bayesian form of the equation for multilevel models. Since Bayesian estimation method
is implemented using a probability framework, the multilevel model can also be expressed using
probability distributions. Thus the simple traditional two-level single-case model which is
represented by equation (4) and (5) can be re-written as seen in the following equation:

vij~ Normal(p;j 6°) (6)
Wi = o+ BiTime;+ y;Phase;+ &;Time;*Phase;
a; ~ Normal(p,, cza)
B; ~ Normal(g, o%)
v; ~ Normal(u,, 6°)
d; ~ Normal(ps, 025)
where, y; is the observed value (outcome) for the i observation at the /™ case; o, is the intercept
of the baseline for the /™ case; B, 1s the baseline slope for the ™ case; v; is the shift in level for the
™ case; 9; 1s the shift in slope for the ™ case. 6 is the variance of the within case errors and it is
assumed constant across cases in this equation. For the second level equation, i, is the average
intercept of the baseline; g 1s the average baseline slope; i, is the average shift in level; s is the

v, and 6”5 are corresponding error variances. These [, [ ,

average shift in slope, and Gza, 025, o
(TR 00 s (52[3, Gzy, and o are refered to as hyperparameters in that they are the upper level of
parameters, not the direct parameters (i.e., o;, B, v;, 9; ) of the model.

In addition, it is assumed that all regression coefficients, o; B; v;, 9;, follow a normal

distribution. In the Bayesian method, this distribution is called a prior distribution, and all

parameters and hyperparameters are required to have a prior distribution.
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Prior probability distribution. The prior distribution is a crucial part of Bayesian
inference. It represents the plausible distribution for an unknown parameter that is believed prior
to observing the specific data (Gelman, 2002; Gelman, Carlin, Stern, & Rubin, 2004). The belief
could be obtained from previous research or theoretical rationale. Without using a prior
distribution, any Bayesian inference cannot be made.

Reasonable choices of objective prior distributions, noninformative prior distributions,
will have minor effects on posterior inferences (Berger, 2006; Efron & Morris, 1975; Goldstein,
2006; Gelman, 2002; Jeffreys, 1961; Morris, 1983). The rationale for using noninformative prior
distributions is to make the data speak for themselves so that posterior inferences are unaffected
by external information out of the current data (Gelman, 2006; Gelman, Carlin, Stern, & Rubin,
2004).

Reasonable noninformative prior distributions have been developed for the parameters of
the multilevel models. Typically, enough data is available to estimate fixed effect (i.e, to, 1p , 1y »
and ;5 in Equation 6) and level-1 error variance (6°) in multilevel models that one can use any
reasonable noninformative prior distribution (Gelman, Carlin, Stern, & Rubin, 2004; Gelman,
2006). A common prior distribution used in applied work for the fixed effects is a
noninformative normal distribution, and a noninformative uniform distribution is a commonly
used prior distribution for c.

In general, noninformative normal distributions are constructed with large variance (i.e.,
1000%), so that posterior inferences cannot be influenced by the choice of variance value.
Similarly, for the uniform distribution, when the upper limit of ¢ (standard deviation unit) goes
sufficiently large, it yields a proper posterior distribution, and inferences are not sensitive to the

choice of the upper limit value. The term sufficiently large is subjective in that it will be defined
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by the scale of the target parameter (i.e., 6). One could obtain a rationale for the proper scale of
the target parameter by conducting a marginal analysis (e.g., general regression based analysis).
The lower limit of ¢ is commonly set to be 0 due to the fact that the value of standard deviation
could not be negative.

Unlike fixed effects and level-1 error variance, noninformative prior distributions for
level-2 variance parameters (i.e., variance of the hyperparameters; cza, 02[;, cszy, and 6% in
Equation 6) have been more difficult to construct. The choice of noninformative prior
distribution for level-2 variance parameters can have a substantially large impact on inferences,
especially in the case where the number of j (cases; unit of the higher level) is small or the
corresponding level-2 variance is close to zero (Gelman, 2002; Gelman, 2006).

Many researchers have suggested various noninformative prior distributions for the
hierarchical variance parameters in multilevel models, including uniform, inverse-gamma family,
and half-t distributions (Berger & Strawderman, 1996; Daniels & Kass, 1999; Gelman, 2006;
Spiegelhalter, Thomas, Best, & Lunn, 2003). For example, Gelman (2006) demonstrated the
impact of various proposed noninformative prior distributions for the level-2 variance parameters
in multilevel models by using a simple example. He found that the uniform distribution generally
works well in that it has little impact on posterior inferences, as long as the number of j >3
which is required to ensure a proper posterior density. Thus, he recommended starting with a
noninformative uniform prior density for the standard deviation of the level-2 variance.

Convergence criteria. In the Bayesian estimation approach, convergence refers to
diagnosing if MCMC techniques reach a proper posterior distribution. MCMC techniques will
eventually converge to the posterior distribution, but if iterations have not proceeded long

enough, the simulations may not be representative of the population distribution. Therefore, in
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Bayesian estimation, one must determine when convergence occurs, and then, how many
samples are needed to make accurate posterior inferences after reaching convergence (Gelman,
Carlin, Stern, & Rubin, 2004; Cowles &Carlin, 1996; Spiegelhalter, Thomas, Best, & Lunn,
2003).

A number of techniques have been implemented in various software packages to identify
these two issues. Various techniques of monitoring convergence are available in WinBUGS
software, including trace plots, history plots, Kernel density plots, and Brooks—Gelman—Rubin
(BGR) plots. A trace or history plot is one of the intuitive diagnostic criteria which plots the
parameter value at time against the iteration number. When more than one chain is assigned
simultaneously, the trace and history plots show each chain in a different color. If all the chains
overlap one another, we can be confident to say that convergence has been achieved (see
Spiegelhalter, Thomas, Best, & Lunn, 2003). A clear sign of non-convergence occurs when we
observe some trends in the plots. Kernel density plot shows the final posterior distribution of the
estimated parameter. This plot could be another useful diagnostic criterion. When converge
occurs, the distribution shows a smooth shape. Generally, as more iterations are performed, the
distribution will become smoother. WinBUGS also has the Brooks-Gelman-Rubin (BGR)
diagnostic which is computed based on the ratio of between-within chain variances (Brooks &
Gelman, 1997; Brooks & Roberts, 1998; Cowles & Carlin, 1996; Gelman & Rubin, 1992). The
intuition is that the variance within the chains should be the same as the variance across the
chains. BGR plots have three lines: green lines represent the normalized width of the central 80%
interval of the pooled, blue lines represent the normalized average width of the 80% intervals
within the individual, and red lines represent the BGR statistic, R. When R converges to 1, and

both the pooled and within interval widths converge with stability, we consider convergence has
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occurred. Convergence for analyses of this study will be visually inspected by these different
diagnostic criteria.

Even if the simulations have reached convergence, the early iterations could still be
influenced by the starting point rather than the population distribution. To eliminate the effect of
the starting point on posterior distribution, it is generally recommended to discard the first half of
each chain and focus on the second half as a conservative choice (Gelman, Carlin, Stern, &
Rubin, 2004; Spiegelhalter, Thomas, Best, & Lunn, 2003). The practice of discarding early
iterations in MCMC is referred to as burn-in. The final inferences, after discarding early
iterations, will be made based on the assumption that the distributions of the simulated values are

close to the population distribution.

Summary

Single-case studies are essential to intensively study the effect of a treatment on a single
case over time. Single-case designs have growing interest over many disciplines including
education, psychology, and social science due to several advantages that single-case designs
have. They provide information about individual effects as well as group effects (Barlow, Nock,
& Hersen, 2009). They also allow the study of special population groups that particularly have a
low population prevalence rate (Van den Noortgate & Onghena, 2003a). In addition, the
characteristics of these designs allow a reduction in the gap between research and practice, and
provide a mechanism for cases to serve as their own control (Morgan & Morgan, 2001).

Several non-parametric and parametric methods have been proposed to analyze single-
case data including visual analysis, nonoverlap statistics, randomization tests, and regression

based methods. In single-case data, it is often considered that the errors are autocorrelated as
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opposed to be independent, and the possible dependency of the errors should be taken into
account in the model. There are several methods available to take autocorrelation into
consideration. Particularly, regression based methods can take autocorrelation into consideration,
using the GLS regression method for one case or multilevel modeling for multiple cases. By
using a multilevel framework, researchers are able to model various dependent error structures,
and complex models (e.g., heterogeneity of variance, and the nesting of cases within studies).

Although the multilevel model has the flexibility to handle dependency of the errors, it
should be noted that a critical assumption has typically been made in the multilevel approach.
Past applications of multilevel modeling to single-case data (e.g., Van Noortgate & Onghena,
2003a, 2003b) as well as methodological studies of multilevel models with single-case data
(Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009; Ferron, Farmer, & Owens, 2010) have
assumed the level-1 error structure is the same for all cases.

It is plausible that the level-1 error structure may not be same across cases (Baek &
Ferron, 2011; Baek & Ferron, 2013). Failure to account for variation that exists in a level-1 error
structure can impact the inferences of a study. Thus, it is important to examine the consequences
of both not modeling between case variation and modeling between case variation in the level-1
error structure. Despite the importance of this issue, neither the effects of non-modeled between
case variation effects nor the performance of modeled between case variation effects in the level-
1 error structure have been systematically examined.

There are several estimation methods available to make it feasible to allow the level-1
error structure to vary across cases including restricted maximum likelihood (REML) and
Bayesian methods. The REML method is the most commonly used method to analyze multilevel

models, and has been implemented by several software procedures that allow easy access.

41

www.manaraa.com



However, the REML has inferential and technical issues associated with analyzing complex
multilevel models of single-case data such as non-convergence with more complex models. The
Bayesian method has the potential to resolve this issue found with REML. It was found that a
complex multilevel model that fails to converge using REML can be run by using the Bayesian
approach (Baek, Petit-Bois, & Ferron, 2012).

Therefore, this study will examine the consequences of modeling and not modeling
between case variation in level-1 error structure on parameter estimations and inferences for
single-case data using Bayesian estimation. Specifically, two level multilevel models where the
level-1 error structures are modeled in different ways (i.e., ID, AR(1) constant across cases, and
AR(1) varies across cases) will be compared in terms of the quality of the fixed effects (i.e., the
overall average baseline intercept, the overall baseline slope, and the overall average treatment
effects (shift in level and shift in slope)) and the variance components (i.e., the between case
variance in the average baseline intercept, the between case variance in the average baseline
slope, the between case variance in the average treatment effect, and the level-1 error variance,
and the autocorrelation). This will be achieved by investigating credible interval coverage rates,
credible interval widths, RMSE, and bias of the point estimates as a function of specific design

and data factors.
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CHAPTER THREE: METHODS

This chapter outlines the methods for this study including the purpose, research

questions, design, sample and analysis conditions, data generation, and outcome measures.

Purpose

The purpose of this simulation study was to extend the MLM modeling in single-case
design to allow between case variation in the level-1 error structure which allows the level-1
error and autocorrelation to vary across cases. This study identified the consequences of not
modeling and modeling between case variation in the level-1 error structure for single-case
studies using the Bayesian estimation approach. Specifically, two level multilevel models where
the level-1 error structures were modeled in different ways (i.e., not modeling between case
variation vs. modeling between case variation) were examined in terms of the accuracy of the
estimates of the parameters. More specifically, this study investigated credible interval coverage
rates, credible interval widths, bias of the point estimates, and root mean squared error (RMSE)
as a function of specific design, data, and analysis factors such as number of cases, series length
per case, true level-1 error structure, variation in the level-2 errors, and methods to modeling

level-1 error structure.
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Research Questions

1. What are the consequences of modeling and not modeling between case variation in the

level-1 error structure in terms of estimation of the fixed treatment effect in single-case

design?

1y

2)

to what extent are the bias and RMSE for the fixed treatment effects impacted as
a function of design factors (number of cases and series length per case), and data
factors (true level-1 error structure and variation in the level-2 errors)?

to what extent are the credible interval coverage and width for the fixed
treatment effects impacted as a function of design factors (number of cases and
series length per case), and data factors (true level-1 error structure and variation

in the level-2 errors)?

2. What are the consequences of modeling and not modeling between case variation in the

level-1 error structure in terms of estimation of the variance components in single-case

design?

1)

2)

to what extent are the bias and RMSE for the variance components impacted as
a function of design factors (number of cases and series length per case), and data
factors (true level-1 error structure and variation in the level-2 errors)?

to what extent are the credible interval coverage and width for the variance
components impacted as a function of design factors (number of cases and series
length per case), and data factors (true level-1 error structure and variation in the

level-2 errors)?
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Design

This study was conducted with a 2x2x3x2x2 factorial design. These factors included (1)
number of cases (4 and 8); (2) series length per case (10 and 20); (3) true level-1 error structure
(level-1 error structure as constant across cases (homogeneous), level-1 error structure as varying
across cases(moderately heterogeneous and severely heterogeneous); (4) variation in the level-2
errors (most of the variance at level-1 and most of the variance at level-2); (5) analysis methods
to modeling level-1 error structure (not modeling between case variation (Model 1), and
modeling between case variation(Model 2)). For each of the 48 conditions, 1,000 data sets were
generated using SAS IML (SAS Institute Inc., 2008) and analyzed using WinBUGS software.
The dependent variables were bias (the average difference between the known parameter value
and the parameter estimate for both the fixed effects and the variance components), credible
interval coverage (the proportion of 95% credible intervals (equal tailed credible interval)
containing both the fixed effects estimates and the variance components), credible interval width
(the average difference between the upper and lower limits of the 95% credible intervals (equal
tailed credible interval) for both the fixed effects and the variance components), and RMSE (the
square root of the average squares of the errors).

Limiting the number of conditions to 48 was partially based on the result of a preliminary
pilot test that was conducted prior to the study. The pilot test was conducted to verify the
accuracy of the simulation program, and to estimate the approximate amount of time required to
run the simulation. For checking the accuracy of the program, a small number of the replications
was run for some of the conditions. Datasets and outputs from the analyses were examined to
ensure the correct dataset and models were being created and analyzed. For estimating the

approximate amount of time to run the simulation, several conditions were run with 1000
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replications. The result of the pilot test shows that the amount of time required for each condition
varied from the least amount of time being 4 days to the longest amount of time being over two
weeks for a condition. The series length per case and the number of cases are two main factors
that most affect the amount of time required. As the series length per case and the number of
cases increase, the amount of time required to run a simulation increases substantially. Based on
this finding, only a limited number of conditions were selected to meet reasonable time period to

finish this study.

Sample

The sample for this study was generated through Monte Carlo simulation methods. Three
factors were manipulated in this study: (1) data factors, (2) design factors, and (3) analysis factor.
The data factors addressed two conditions: true level-1 error structure (how to generate the level-
1 error structures) and variation in the level-2 errors. For the true level-1 error structure, three
different types of data sets were generated, homogeneous, moderately heterogeneous, and
severely heterogeneous error structures. For the homogeneous error structure, the level-1 error
structure was generated as constant across cases. For the moderately and severely heterogeneous
error structures, the level-1 error structure was generated as varying across cases. Design factors
addressed specific values of the following two conditions: number of cases and series length per
case. The analysis factor addressed how to model the level-1 error structure, Model 1 and Model
2. For Model 1, the level-1 error structure was assumed and analyzed as constant across cases.
For Model 2, the level-1 error structure was assumed and analyzed as varying across cases. The
data, design, and analysis factors which were used to define the simulated data are further

defined below.
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Data factors
True level-1 error structure. Two different types of data sets were generated depending
on how the level-1 error structure was modeled, homogeneous error structure and heterogeneous
error structures. The general equations used to generate data are presented in equations (7) and
(8).
Level-1 equation:
Yii = Poi + P Phase; + by Timey + B3 Time; *Phase;; + e; (7)
Level-2 equation:
Boj = 0o + uq; (®)

Bii =010+ uyj

P =020+ uy;

Bsi =030 + us
where y; was the observed value (outcome) at the ith observation for the jth case. f was the
baseline intercept for the jth case and f;; was the difference between the baseline level and the
treatment level (shift in level) for the jth case when Time;; was equal to 0. S, was the baseline
slope for the jth case, and £3 was the change in slopes between the baseline phase and the
treatment phase (shift in slope). For the interaction term (7ime; *Phase;;), Time; was centered so
that O corresponds to the first observation of the treatment phase. e; was the residual that
indicates within case variation (level-1 errors) and was assumed to be multivariate normally
distributed N(0,%,). In this study, . was assumed to follow first-order autoregressive error
structure, AR(1). For the level-2 equation, 8y was the average baseline intercept and 9 ;) was the
average shift in level at Time; which was equal to 0, 6, was the average baseline slope, and 6 39

was the average shift in slope. uy; , uy; , uy; and uz were level-2 errors and were assumed to be
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multivariate normally distributed N(0,Z,). In this study, the fixed effect value was fixed for both
data sets so that the average baseline intercept (6y9) and the average baseline slope (6,9) were 1,
and the shift in level (6;9) was 2 and the shift in slope (639) was .2.

Although both homogeneous error structure and heterogeneous error structure data sets
were generated using this same general equation, they were distinguished by how the level-1
error structure was generated. For the homogeneous error structure, the level-1 error structure
was generated using the ARMASIM function in SAS version 9.3 (SAS Institute, 2008) with a
level-1 error variance of 1.0 and autocorrelation values of .2. This led to all cases included in the
study having the same value of level-1 error variance and autocorrelation for each condition. For
the moderately heterogeneous error structure, the level-1 error structure was also be generated
using the ARMASIM function, but values of autocorrelation and level-1 error variance were
generated from a normal distribution using the RANNOR random number generator, and from a
uniform distribution using the RANUNI random number generator in SAS version 9.3 (SAS
Institute, 2008), respectively. For the autocorrelation, the normal distribution followed a mean of
.2 and a standard deviation of .1 for the moderately heterogeneous, and the normal distribution
followed a mean of .2 and a standard deviation of .2 for the severely heterogeneous error
structure. The mean value of the autocorrelation .2 had been selected based on the literature
review of single-case designs. According to the survey conducted by Shadish and Sullivan
(2011), the average autocorrelation value of the studies reviewed was .2, after correcting for
sampling errors. The values of the standard deviation of .1 and .2 were selected based on a
consideration of possible range of autocorrelation distribution. The mean of .2 with standard
deviation of .1 creates a distribution that 99% of the autocorrelation values fall between -.1 and

.5. The mean of .2 with standard deviation of .2 creates a distribution that 99% of the
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autocorrelation values fall between - .4 and .8. The range of these values is covered the possible
autocorrelation values typically found in behavior research (Huitema, 1985; Matyas &
Greenwood, 1996; Shadish & Sullivan, 2011). For the level-1 error variance, standard deviation
unit was used. The uniform distribution of the level-1 error standard deviation with a lower
bound of .7 and an upper bound of 1.3 led the uniform distribution to follow a mean of 1 and a
standard deviation of .17 for the moderately heterogeneous, and the uniform distribution of the
level-1 error standard deviation with a lower bound of .4 and an upper bound of 1.6 led the
uniform distribution to follow a mean of 1 and a standard deviation of .35 for the severely
heterogeneous. This process was led to every case included in the study to have their unique
value of level-1 error standard deviation and autocorrelation within a specified range. The level-1
error standard deviation were generated in the way the largest level-1 error variance ((1 .3)2)
value can be either as much as 3.5 times of the smallest level-1 error variance value ((.7)%) or as
much as 16 times ((1.6)°) of the smallest level-1 error variance value ((.4)*). The motivation for
this rationale was based on the analyses of real datasets. Back and Ferron (2013) found that when
they allowed the level-1 error variance to vary across cases in real datasets, the largest level-1
error variance tended to be about average four times the smallest, and ranged up to 16 times the
smallest.

For all data sets, the level-2 errors were generated from a normal distribution using the
RANNOR random number generator in SAS version 9.3 (SAS Institute, 2008). For each of the
24 conditions (not included the analysis methods design), 1,000 data sets of homogeneous,
moderately heterogeneous, and severely heterogeneous data sets were generated which led to a

total of 72,000 datasets being generated.
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Variation in the level-2 errors. The variation in the level-2 errors had two levels (most
variance at the level-1 and most variance at the level-2). The previous simulation studies either
had the most variance at level-1(Ferron et al., 2009; Van den Noortgate, 2008), or had most of
the variance at the higher levels (level-2 or level-3) (Van den Noortgate, 2008). Their simulation
studies were motivated by analyses of real datasets where it was found that in some studies the
largest variance component was at level-1 whereas in other studies the largest variance
components were at level 2. Based on these finding, both cases were incorporated into this study.
The average value of level-1 error variance was fixed to 1.0. The first category will model the
data having most of the variance at the level-1, so that the level-2 error variances in intercept,
phase, time, and interaction had the values of .5, .5, .05, and .05, respectively. It was assumed
that there was no covariance among level-2 errors. The second category modeled the data having
most of the variance at the level-2, so that the level-2 error variance in intercept, phase, time, and

interaction had the values of 2, 2, .2, and .2, respectively.

Design factors

Number of cases. The number of participants had two levels (small and large). The small
category included 4 participants, and the large category included 8 participants.

These numbers had been selected based on previous findings of single-case studies.
Farmer, Owens, Ferron, and Allsopp (2010) found that the average number of participants per
single-case study are less than or equal to 7. Another study that reviewed published single-case
studies found that the number of participants or sample size per single-case study falls between 1
and 13, with an average of 3.64 (Shadish & Sullivan, 2011). Some applied studies that

synthesized published single-case studies also found that the average number of participants per
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study was 3.25 (Petit-Bois, 2012) and 4.60 (Baek, Petit-Bois, & Ferron, 2012). In addition,
Kazdin (2011) suggests that a minimum of three or more baselines are recommended to see a
treatment effect. He states that 8 or 9 baselines (participants, settings, and behaviors) are needed
in order to see clear treatment effects.

Previous Monte Carlo simulation studies have been conducted for single-case studies
using 4 or 8 participants (Owens & Ferron, 2011; Petit-Bois, in press), and 4 or 7 participants
(Ugille, Moeyaert, Beretvas, Ferron, & Van den Noortgate, 2012).

Series length per case. The series length per case had two levels (small and moderate).
The small category included series lengths of 10, and the moderate category included series
lengths of 20. Previous studies were used to determine the series lengths for this study. Shadish
and Sullivan (2011) found that 90% of the studies reviewed had 49 or fewer observations. In
addition, previous simulation studies in this area used series lengths of 10, 20 and 30 (Ferron et
al., 2009; Ferron, Farmer, & Owens, 2010; Owens & Ferron, 2011), or 10 and 30 (Ugille,
Moeyaert, Beretvas, Ferron, & Van den Noortgate, 2012). Only two levels of the series length
per case were chosen due to the great impact on the amount of time to run the simulation. These

selected values cover small to moderate series lengths found in the previous studies.

Analysis factor

Two different methods of modeling level-1 error structure were applied to the generated
data (both homogeneous and heterogeneous error structures). The first method was modeling the
level-1 error structure to be constant across cases (Model 1). The second method was modeling

the level-1 error structure to vary across cases (Model 2). This cross effect provides in-depth
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information about the performance of the proposed idea. More detailed information about Model

1 and Model 2 is in the following section.

Analysis of Each Simulated Data Set

Equations for the specified models (Model 1 and Model 2)

Each data set was analyzed using the two different models. The two level models were
estimated using the Bayesian estimation method via WinBUGS software version 1.4.3 which
uses a Gibbs sampler. The equations of two-level single-case design (equations (7) and (8)) used
for this study can also be expressed using Bayesian forms (probability distributions) as shown in
below. Equation (9) was for Model 1 that assumed the first-order autoregressive structure for the
level-1 error structure where the autocorrelation and the within error variance were assumed
constant across cases. This equation is an extension from equation (6) in that the equation
includes the autocorrelation parameter (p).

v~ Normal(6;;, 6°) 9)
Wi = o+ BiTime;+ y;Phase;+ &;Time; *Phase;

Boj = Hoj

0= Wi T p O — M) (1)

a; ~ Normal(,, Gza)

B; ~ Normal(g, 6%)

¥j ~ Normal(y,, 027)

d; ~ Normal(ps, 025)
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where y; was the observed value (outcome) for the i observation at the /" case, and follows
normal distribution as a prior distribution with the mean of 0;; instead of p;;, and variance of o ;
0;; was defined by adding the correlated error term between the adjacent two time points to the p;,
where p represented the autocorrelation, and (y.1);— W-1y;) represented the error term in the i-/
time point. When i=0, 6y; was same as [lo; ; a; was the intercept of the baseline for the ™ case; Bi
was the baseline slope for the j case; v; was the shift in level for the ™ case; d; was the shift in
slope for the j™ case. > was the error variance that leads to within-case variation. It was
assumed that all regression coefficeints, o; 3 v;, 8;, follow a common prior distribution (Gelman,
Carlin, Stern, & Rubin, 2004; Gelman, 2006). In this study, normal distributions were assigned
as prior distributions for all parameters. More detailed information about how to model the prior
distributions is in the following section.

For the second level equation, p, was the average intercept of the baseline; pig was the
average baseline slope; 1, was the average shift in level; pus was the average shift in slope, and
Gza, 025, Gzy, and c%5 are corresponding error variances.

Model 2 could be further developed from Model 1 with modeling between case variation
in the level-1 error structure which can be accomplished by changing ¢ to sz and p to p; which
indicated the values were specified to the /™ case. Model 2 was defined in the same way that
Model 1 was defined where intercept, baseline slope, shift in level, and shift in slope were
included and they were all allowed to vary across cases. Model 1 and Model 2 were
distinguished only in the way to model the level-1 error structure. In Model 2, the level-1 error
variance and autocorrelation were allowed to vary across cases (j) as follows:

yij~ Normal(6;; cj°) )

Wi = o+ BiTime;+ y;Phase;+ &;Time; *Phase;
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Boj = Hoj

0= Wi+ pj (-1 — Ha-ny) (@ =1)
a;~ Normal(i,, 67,)

B; ~ Normal(ps, 023)

¥; ~ Normal(p,, ozy)

d; ~ Normal(ps, 025)

6 j ~ Uniform(L;, Us)

p;~Normal (1, 6%) I (-1<p,; < 1)

Prior distributions for the parameters
A common prior distribution used in applied work for po, up , py , and po is a
noninformative normal distribution with a mean of 0 and a variance of 10002, and & is a uniform
distribution with the lower limit of 0 and the upper limit of 100. Thus, these prior distributions
were constructed for the fixed effect (i.e., pa, up , uy , and pod) and level-1 error standard
deviation (o) in this study.
e 1p » Ly » L ~ Normal(0, 1000%)
o ~ Uniform(0, 100)
For the fixed effect, noninformative normal distributions were constructed with large variance
(i.e., 1000%), so that posterior inferences could not be influenced by the choice of variance value.
Similarly, for the level-1 error variance, the uniform distribution was constructed with the large
upper limit of ¢ (standard deviation unit of the level-1 error variance). The value of 100 was
considered as sufficiently large because the true value of ¢ was set as 1 in this study. The lower

limit of ¢ was set to 0 due to the fact that the value of the standard deviation cannot be negative.
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In addition, uniform distributions were assigned to be the priors for the level-2 error
variance parameters (i.e., 67 , 023, cszy, and %) by Gelman (2006)’s recommendation.
Specifically, the noninformative prior distributions for the standard deviation unit of the level-2
error variance (6, , G, Gy, and o5 ) were assigned to be the uniform distribution with the lower
limit of 0 and the upper limit of 100.

Gy , OB, Gy, 05 ~ Uniform(0, 100)

For autocorrelation, p, a reasonable noninformative prior distribution can be a normal
distribution. Shadish and Sullivan (2011) summarize the characteristics of single-case designs
using 809 published studies. The characteristics include types of designs, outcome variables,
cases per study, series length per case, number of phases, and autocorrelations. In their report,
the histogram of the autocorrelation among the published studies seems to follow a normal
distribution ranging from -.931 to .786. Thus, the noninformative prior for p that follows a
normal distribution with a mean of 0 and a standard deviation () of 1000 was assigned.
However, since p is a correlation parameter, the scale of this parameter should be the same as a
correlation scale, from -1 to 1. Therefore, the scale of the prior distribution for p was stationary
restricted so that its range falls between -1 and 1 (Gamerman & Lopes, 2006).

p ~Normal (0, 1000%) I (-1<p < 1)

Since no one has worked through the proposed idea that the level-1 error structure could
vary across cases, no literature was found to define priors for 6; and p ;. This study had suggested
one possible theoretical way to construct the priors for 6 and p j as follows:

6 j ~ Uniform(L, Us) with L ~ Uniform(0, 100)
U, ~ Uniform(L,, 100)

pi~Normal (i, 6°5) I (-1< p; < 1) with p,~ Normal (0, 1000°)
6y~ Uniform(0, 100)
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The prior for o; could simply be assumed to follow the same prior that ¢ follows, which is the
uniform distribution with the lower limit of L, and the upper limit of U,. The lower limit of L,
can be assumed to follow a uniform distribution with the lower limit of 0 and the upper limit of
100. The upper limit of U, can be also assumed to follow a uniform distribution but with the
lower limit of 0, and the upper limit of L, since the U, value should be bigger than the L, value.

The mean and the standard deviation of the uniform distribution for o; will be computed using

|Uc5—L0|2
12

the following formula: LGJ;J

and , respectively.

A reasonable way to construct the prior for p; is to assume the same prior used to
construct p. One can assume that p; follows the same prior that p follows, which is the normal
distribution with a mean of i, and a variance of 6%, but with the restricted range between -1 and
1. The p, and o, could be further defined as a normal distribution with a mean of 0 and a
variance of 10007 for L, , and a uniform distribution with the lower limit of 0 and the upper limit

of 100 for o,,.

Convergence criteria for the analysis

Pilot simulation data were generated to test convergence and to make decisions about the
number of iterations, and the burn-in period. A data set per each condition of the design factors
(24 data) was created and run with two models (Model 1 and Model 2). This ended up testing all
48 conditions. The various diagnostic criteria were used in monitoring convergence, including
trace plots, history plots, Kernel density plots, and Brooks—Gelman—Rubin (BGR) plots for the
created data set using two different MCMC chains. The specific information about each criterion

is illustrated in Figures 8 through 10.
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Trace or history plots. One of the intuitive diagnostic criteria is a trace plot or history
plot which plots the parameter value at time against the iteration number. Trace plot is dynamic,
being redrawn each time the screen is redrawn, and history plot is showing a complete trace for
the targeted variables. When more than one chain is assigned simultaneously, the trace and
history plots show each chain in a different color. If all the chains overlap one another, we can be
confident to say that convergence has been achieved (see Spiegelhalter, Thomas, Best, & Lunn,
2003). A clear sign of non-convergence occurs when we observe some trends in the plots. An
example of trace and history plots is illustrated in Figure 8. In the figure, two chains are assigned
simultaneously, and overall the convergence looks reasonable since both chains appear to be

overlapping each other.
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Figure 8§ An Example of Trace and History plots (first raw: history plots, second raw: trace plots)

Kernel density plots (Posterior distributions of each parameter). Kernel density plot
shows the final posterior distribution of the estimated parameter. This plot could be another

useful diagnostic criterion. When converge occurs, the distribution shows a smooth shape.
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Generally, as more iterations are performed, the distribution would become smoother. Figure 9
shows an example of the Kernel density plots. The convergence looks reasonable in that the
distributions show a smooth shape. From the plot, we can also see the range of possible values

for each parameter and which values are more likely than others.
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Figure 9 An example of Kernel density plots

Brooks-Gelman-Rubin (BGR) plots. Brooks-Gelman-Rubin (BGR) diagnostic is
computed based on the ratio of between-within chain variances (Brooks & Gelman, 1997;
Brooks & Roberts, 1998; Cowles & Carlin, 1996; Gelman & Rubin, 1992). The intuition is that
the variance within the chains should be the same as the variance across the chains. BGR plots
have three lines; Green lines represent the normalized width of the central 80% interval of the
pooled, blue lines represent the normalized average width of the 80% intervals within the
individual, and red lines represent the BGR statistic, R. When R converges to 1, and both the
pooled and within interval widths converge with stability, we consider convergence occurred.
Figure 10 shows an example of BGR plots. In the figure, the convergence looks reasonable since

three lines converge to one with stability.
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Figure 10 An example of BGR plots

MC errors. Monte Carlo error (MC error) will also be tracked to check the
computational accuracy of the posterior estimates. This indicates a difference between the mean
of the sampled values (the estimated posterior mean for each parameter) and the true posterior
mean. Typically, the simulation should be run until the MC error for each parameter is less than

5% of the sample standard deviation (sd) to obtain a reliable estimate of the parameter.

Analysis to Estimate Bias of the Point Estimates, Credible Interval Coverage, Credible
Interval Width, and Root Mean Squared Error

Bias, credible interval coverage, credible interval width, and RMSE were the dependent
variables for the six independent variables (Data, design, and analysis factors). Bias for the
average treatment effects and average variances of treatment effects parameters (shift in level,
shift in slope, level-1 error variances) was computed as the average difference between the
known value of parameters and the estimated posterior mean value of the parameters. The

equation of the bias is shown below:

_ a7 -1

bias 1000
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The deviation between the known value of parameters and the estimated value of the

parameters (¥ — y ) was first aggregated across 1000 replications within each condition [

1009(% — ) ] and then was divided by 1000 to obtain an average bias value. Bias for the level-
1 error variance and autocorrelation parameters were also computed as the average difference
between the known value of parameters and the estimated posterior mean value of the
parameters. However, since the level-1 error variance and the autocorrelation parameters were
generated to vary across cases for heterogeneous error structure data sets, and estimated to vary
across cases for Model 2, bias for the level-1 error variance and autocorrelation parameters were
computed as the average difference between the known value of parameters for each case and the
estimated posterior mean value of the parameters for each case. The equation of the bias is
shown below:

n=1

1000 M)
bias = m

1000

The deviation between the known value of parameters for each case and the estimated value of
the parameters (¥, — y;) was first aggregated across the number of cases per each replication
[(E2 (7 — )] and then divided by the number of cases m to obtain an average bias value per
Liz By
)

each replication [( . This average bias value per each replication was then aggregated

across 1000 replications within each condition [},12%° W)] and then divided by 1000 to

obtain an average bias value.

Relative bias for parameters whose known value is anything other than 1.0 or 0 was also
computed which can be represented as a percentage of the known parameter value. Since relative
bias is represented by percentages rather than a value, this statistic allows comparisons of bias
among parameters that have different scales of the value. Relative bias for the average treatment
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effects and average variances of treatment effects parameters (shift in level, shift in slope, level-1
error variances) was computed as the average difference between the known value of parameters
and the estimated value of the parameters divided by the known parameter values. The equation
of the relative bias is shown below:

1000()/ )/)

relative bias = W

The deviation between the known value of a parameter and the estimated value of the

parameter divided by the known value of the parameter (?y;y) was first aggregated across 1000

replications within each condition [ }129° - y) ] and then was divided by 1000 to obtain an

average relative bias value. Relative bias for the level-1 error variance and autocorrelation
parameters was computed as the average difference between the known value of parameters for
each case and the estimated value of the parameters for each case divided by the known

parameter values for each case. The equation of the relative bias is shown below:

m (]//\l — yi)
311000 Li=1 Vi )
m

1000

relative bias =

The deviation between the known value of a parameter for each case and the estimated value of

(ﬁ—Yi))

i

the parameter for each case divided by the known value of the parameter for each case (
was first aggregated across the number of cases per each replication [ ( 2}i%, (Vly_m) ] and then
l
divided by the number of cases m to obtain an average relative bias value per each condition
m (ri-vi)

[ =1 Yi

— ]. This average relative bias value per each condition was then aggregated across 1000
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m (Fi-vi)

replications within each condition [ },12%° an) ] and then divided by 1000 to obtain an

average relative bias value.

The root mean squared error for the average treatment effects and average variances of
treatment effects parameters (shift in level, shift in slope, level-1 error variances) was computed
as the square root of the average sums of the squares of the errors. The equation of the RMSE is

shown below:

1000(A_ 2
=17 —7)
RMSE = |&n=1Y 77
\/ 1000

The squared deviation between the known value of a parameter and the estimated value of the
parameter [(7 — y)* ] was first aggregated across 1000 replications within each condition

[ X1999(% — ¥)?] and then was divided by 1000, and the average RMSE value was obtained
through the square root of the entire equation. The root mean squared error for the level-1 error
variance and the autocorrelation was computed as the square root of the average sums of the
squares of the errors for each case. The equation of the RMSE is shown below:

1000 M)
RMSE = |22 m
1000

The squared deviation between the known value of a parameter for each case and the estimated
value of the parameter for each case [(7, — y;)? ] was first aggregated across the number of cases
per each replication [Y.1%, (%, — ¥;)?] and then divided by the number of cases m to obtain an
average squared deviation value per each replication. This average squared deviation per each

replication was then aggregated across 1000 replications within each condition
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m o2
[ y1000 El=1(+y‘))] and then divided by 1000, and the average RMSE value was obtained

through the square root of the entire equation.

Credible interval coverage was computed as proportion of the 95% credible interval
(equal tailed credible interval) that contains the known parameter value. The credible interval
width was computed as the average difference between the upper and lower limits of the 95%
credible intervals (equal tailed credible interval). These statistics were aggregated across 1000

replications within each condition to represent the average values of the statistics.

Analyses to Examine Relationships between Data, Design, and Analysis Factors and Bias of
the Point Estimates, Credible Interval Coverage, and Credible Interval Width, and Root
Mean Squared Error

Box and whisker plots along with general linear modeling (GLM) were examined to
evaluate the bias estimate and RMSE of each parameter. Box and whisker plots illustrated the
distribution of the bias and the RMSE estimate of the each parameter across the simulation
conditions. GLM illustrated the explained variability of the bias and the RMSE estimates
associated with each parameter as a function of the main effects of and interaction effects
between the design, data, and analysis factors to inform the source of bias and error. A main
effect only model was built first, then two-way or three-way interactions were added in the
model. If a main effect only model explained a significant proportion of the variability (at least
94% of the total variability), then no further models were investigated. However, if the model
failed to explain the minimum variability, then interactions were included in the model. The
effects size, eta-squared (1), was also calculated to determine the proportion of variability

associated with each effect. The eta-squared value of the each effect was compared to Cohen’s

63

www.manaraa.com



(1988) criteria to determine the size of each effect. According to the criteria, a small effect size is
.01, a medium effect size is .06, and a large effect size is .14 or greater. Finally the line graphs
were created for a factor that has a medium or larger effect (n>>.06) to illustrate the relationship

between the different level of the factor and the dependent variables.
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CHAPTER FOUR: RESULTS

This chapter provides the results of the research questions. The chapter starts with
describing how the results were obtained, and then displays convergence information (trace
plots, history plots, Kernel density plots, and Brooks—Gelman—Rubin (BGR) plots along with
MC error). Then the outcome measures (bias, RMSE, credible interval coverage and width) of
the fixed treatment effects and the variance components are provided in sequential order. The
following research questions were addressed:

3. What are the consequences of modeling and not modeling between case variation in the
level-1 error structure in terms of estimation of the fixed treatment effects in single-case
design?

1) to what extent are the bias and RMSE for the fixed treatment effects impacted as
a function of design factors (number of cases and series length per case), and data
factors (true level-1 error structure and variance of level-2 errors)?

2) to what extent are the credible interval coverage and width for the fixed
treatment effects impacted as a function of design factors (number of cases and
series length per case), and data factors (true level-1 error structure and variance
of level-2 errors)?

4. What are the consequences of modeling and not modeling between case variation in the
level-1 error structure in terms of estimation of the variance components in single-case

design?
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1) to what extent are the bias and RMSE for the variance components impacted as
a function of design factors (number of cases and series length per case), and data
factors (true level-1 error structure and variance of level-2 errors)?

2) to what extent are the credible interval coverage and width for the variance
components impacted as a function of design factors (number of cases and series
length per case), and data factors (true level-1 error structure and variance of
level-2 errors)?

There were 48 conditions simulated using the five factors in this Monte Carlo study.
These factors were (1) number of cases (4 and 8); (2) series length per case (10 and 20); (3) true
level-1 error structure (homogeneous , moderately heterogeneous, and severely heterogeneous;
(4) variation in the level-2 errors (most of the variance at level-1 and most of the variance at
level-2); and (5) analysis methods to modeling level-1 error structure (not modeling between
case variation (Model 1), and modeling between case variation(Model 2). This yielded a
2x2x3x2x2 factorial design.

A small set of data sets were first generated to test convergence and to make decisions
about the number of iterations, and the burn-in period. A data set per each condition of the
design factors (24 conditions) was created and run with two models (Model 1 and Model 2). The
various diagnostic criteria were used in monitoring convergence, including trace plots, history
plots, Kernel density plots, and Brooks—Gelman—Rubin (BGR) plots for the created data sets
using two different MCMC chains. The initial values of the first chain were randomly given for
all parameters and the initial values of the second chain were generated for all parameters using a
gen inits option in WinBUGS software. In WinBUGS, the initial values are generated by

sampling either from the prior or from an approximation to the prior given in the model. The MC
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error was also tracked for all parameters to check the computational accuracy of the posterior
estimates. Specifically, the MC error of each parameter was examined if it was less than 5%.

Next, the outcome measures (bias, RMSE, credible interval coverage and width) were
evaluated for the fixed treatment effects and the variance components. In addition, relative bias
was calculated for the parameter where its value was not equal to 1. The relationship between
five factors (number of cases, series length per case, true level-1 error structure, variation in the
level-2 errors, and analysis methods to modeling level-1 error structure) and outcome measures
(bias, RMSE, confidence interval coverage and width) were then evaluated using PROC GLM in
SAS. Models were built to find medium effects or larger (eta-squared values (n°) were equal to
or greater than .06). The 1 value is measuring the degree of association between the outcome
measures and the main and interaction effects of the independent variables (five factors). The
n’is the proportion of variability of each outcome measure that is associated with each of the
effects in the simulation study. It is computed as the ratio of the effect variance (SSeffect) to the
total variance (SSiotal).

N = SSeftect / SStoul

The computed n* values were interpreted using Cohen’s (1988) standards with a small
effect size as .01; a medium effect as .06; and a large effect as .14 or greater. Each model was
first built as a main effects only model, and if this model explained at least 94% of the total
variability then no interaction effects were included. However, if the model explained less than
94% of the total variability, then interactions (two or higher order interactions, sequentially)
were added until the model explained at least 94% of the total variability. For the independent
variables (both main and interaction effects) that showed n*values of .06 and larger, box plots

and line graphs were created to further examine the association with outcomes of interest.
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The results of the fixed treatment effects and variance components were also looked by
three different types of specifications in the level-1 error structure: under-specified (i.e., Model 1
when the data were generated to be heterogeneous), correctly-specified (i.e., Model 1 when the
data were generated to be homogeneous, or Model 2 when the data were generated to be
heterogeneous), and over-specified (i.e., Model 2 when the data were generated to be

homogeneous).

Convergence

In order to meet convergence criteria, a very long run of iterations was required because
of the complex models used in this study. As the complexity of the model to be estimated
increased (i.e., more parameters to estimate), longer iteration time was required. Therefore, when
the data were analyzed with Model 2, it required more iterations than when the data were
analyzed by Model 1. In addition, the parameters that had the most difficulty meeting the
convergence criteria were the level-2 error standard deviation parameters, especially the level-2
error standard deviation of phase parameter. It was more difficult to meet the convergence
criteria when the number of cases was small (4), than large (8). One possible reason that the
level-2 error standard deviation parameters presented more difficulty in meeting the convergence
criteria is because number of units at level-2 (case) is relatively small compared to the number of
units at level-1(series length).

After checking all simulated data sets for convergence analyses (24 data sets), it was
decided to use a burn-in of 2,000 iterations and to run an additional 500,000 iterations, but to use
only 50,000 samples of the 500,000 iterations to form the posterior distribution for the main

analyses. Thinning is a technique that can help reduce storage requirements when very long
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iteration chains need to run. The samples from every k™ iteration are stored by using the value of
thin k. In this study, 50,000 samples were used to form the posterior distribution and thin was
set to be 10, so a total of 500,000 (10*50,000) iterations were actually run, of which 50,000
samples (every 10™) were stored.

The 50,000 samples were twice the required sample to form the posterior distribution.
The required sample was 25,000 samples (after thinning to select 1 in every 10 iterations) based
on estimates of the parameters and the models that required the longest iteration. They were the
level-2 error standard deviations parameters estimated by Model 2 with the number of cases 4.
Once the required sample size, 25,000 was selected based on the various convergence criteria
and MC error statistics, the final sample size 50,000 was selected as double of the required
sample size to be make sure that all simulated samples would reach the convergence criteria.

More detailed information about each convergence criteria follows. In the generated data
sets for the convergence test (24 data sets), more than 10 parameters for Model 1 and more than
18 parameters for Model 2 were estimated that yield a total of over 336 parameters to be
estimated. Therefore, only convergence results of some of the parameters were provided in
detail. Since the level-2 error standard deviations were the most difficult parameters to reach
convergence criteria, the results of the convergence criteria were provided for those parameters

along with some of the fixed treatment effect parameters.

Trace and History Plots
The trace and history plots of the level-2 error standard deviation for phase and the

interaction, and the average treatment effect for phase parameters were illustrated in Figure 11.
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In this analysis, two chains were assigned simultaneously, and overall the convergence looks

reasonable since both chains appear to be overlapping each other.
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Figure 11. Trace and history plots of estimated parameters (sigmabeta: Level-2 error standard
deviation for phase; betac: Average treatment effect for phase; sigmada: Level-2 error standard

deviation for interaction )
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The trace and history plots of the rest of the parameters look similar to Figure 11. The
plots from the first two rows were obtained when Model 1 was used to estimate the parameters
for the condition where the number of cases equaled 4 and the series length per case was 10
(First row: History plots; second row: Trace plots). The rest of the plots were from when Model
2 was used to estimate the parameters for the same condition (Third row: History plots; Last row:

Trace plots).

Kernel Density Plots (Posterior distributions of each parameter)
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Figure 12. Kernel density plots of estimated parameters (sigmabeta: Level-2 error standard
deviation for phase; beta[3] :Individual treatment effect for phase for the case who had id
number 3; betac: Average treatment effect for phase; tgamma[4]: autocorrelation for the case
who had id number 4; tsigma[2]; level-1 error standard deviation for the case who had id number
2)
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Figure 12 shows the Kernel density plots of the level-2 error standard deviation for phase,
the individual treatment effect of phase for the case who had the id number 3, the average
treatment effect for phase, the autocorrelation for the case who had the id number 4, and the
level-1 error standard deviation for the case who had the id number 2. The plots were created
from 50,000 samples.

Overall, the convergence looks reasonable in that the distributions are smooth. The
density plots of the rest of the parameters all show a smooth shape. The two plots of the first row
were from the analysis of Model 1 for the condition where the number of cases was 4 and the
series length per case was 10. The rest of the plots were from the analysis of Model 2 for the

same condition.

Brooks—-Gelman-Rubin (BGR) Plots

Figure 13 shows the BGR plots of the level-2 error standard deviation for phase and the
interaction, the average treatment effect for phase, and the autocorrelation for the case who had
the id number 3.

Overall, the convergence looks reasonable for most of the parameters since three lines
converge to one with stability. The two plots of the first row were from Model 1 and the
condition when the number of cases was 4 and the series length per case was 10, whereas the rest

of the plots were from Model 2 for the same condition.
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Figure 13. BGR plots of some parameters (sigmabeta: Level-2 error standard deviation for
phase; sigmada: Level-2 error standard deviation for interaction; betac: Average treatment effect
for phase; tgamma([3]: autocorrelation for the case who had id number 3)

MC Error

The MC error was also tracked for all parameters to check the computational accuracy of
the posterior estimates. For example, in the condition of the number of cases equal 4 and the
series length per case equal 10 estimated by Model 1, the MC error of the all parameters ranged
from .001 (level-1 error standard deviation) to .02 (level-2 error standard deviation for phase).
For the same condition estimated by Model 2, the MC error of the all parameters ranged from
.002 (level-1 error standard deviation for the case who had the id number 2) to .03 (level-2 error

standard deviation for phase).
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As each of the 48 conditions were run with the selected number of burn-in and iterations
(2,000 burn-in and 500,000 more iterations), the convergence rate that indicated a complete
analysis of each condition (1000 samples per each condition) was also tracked for each
condition. In the WinBUGS software, several types of trap messages can be popped up during a
running analysis which indicates an error that cannot be solved by WinBUGS, as a result, the
running analysis cannot be completed. In the analyses of the current study, the “‘undefined real
result’ trap message was obtained occasionally throughout the analysis of each condition. This
message indicates numerical overflow which can be caused by several reasons. One possible
reason is that the initial values generated may be numerically too extreme, especially when
‘noninformative (vague)’ priors are used. Another possible reason is that the analysis faces on
the numerical difficulties in sampling. For more information about trap messages, please refer to
WinBUGS user manual version 1.4 (Spiegelhalter, Thomas, Best, & Lunn, 2003).

The trap message does not explicitly provide a reason that the ‘undefined real result’
error occurred, therefore, it was assumed the combinations of these possible reasons caused this
error in the current study. The error had occurred in every condition. Since the analysis of the
targeted sample could not be completed when this error occurred, not all of the 1000 samples
were analyzed. Therefore, the total number of samples that were analyzed were tracked per each
condition, which was indicated by the convergence rate. The Convergence rate was over 97% for

all 48 conditions.

Fixed Treatment Effects
The first research question involves the estimates of the fixed treatment effects and the

consequences of modeling and not modeling between case variation in the level-1 error structure.
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More specifically, (1) the bias and the RMSE for the fixed treatment effects as function of the
design and data factors, and (2) the credible interval coverage and width for the fixed treatment

effects as function of the design and data factors.

Bias

The distribution of bias values of the fixed effect for treatment effects (shift in level and
shift in slope) are illustrated in Figures 14 through 21. Relative bias values for the treatment
effect are provided in Appendix A. The full information about the n’values for the GLM models
is also provided in Appendix B.

Average treatment effect for phase (shift in level). The average bias values of the
treatment effect for phase were close to 0 across the two models (Model 1 and Model 2) with
little variation (Figure 14). The type of model explained little of the variability (n* = .00078), but
the average bias value for Model 2 (M = 0.0003, SD = 0.024) where between case variation was
modeled in the level-1 error structure was slightly smaller than the average bias value for Model
1(M =0.0016, SD = 0.024) where between case variation was not modeled in the level-1 error
structure.

The average bias values of the treatment effect for phase across the two models were also
examined within the three different types of true level-1 error structures (homogeneous,
moderately heterogeneous, and severely heterogeneous) (Figure 15). The average bias values
were all close to 0 across the two models within the three true level-1 error structures with little
variability. The different types of the true level-1 error structures explained little of the
variability (n* = .01196) which indicates similarity of the average bias values across the three

true level-1error structures. Specifically, the smallest average bias value was found when the true
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level-1 error structure was moderately heterogeneous and estimated by Model 2 (M= .0003, SD =
.028), and the largest average bias value was found when the true level-1 error structure was

homogeneous and estimated by Model 1 (M= .0050, SD =.014).
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Figure 14. Box plots illustrating the distribution for the average bias values for the shift in level
across Model 1 which did not model between case variation, and Model 2 which models between
case variation.

In addition, there was very little difference across the two models within the three
different types of the true level-1 error structures. The smallest average bias difference between
the two models was found when the true level-1 error structure was severely heterogeneous (|M>-

M;| =0.0007), and the biggest average bias difference between the two models was found when

the true level-1 error structure was moderately heterogeneous (|M>-M;| = 0.0016).
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Figure 15. Box plots illustrating the distribution for the bias values for the shift in level across
the two models within the three true level-1 error structures.

In order to further explore if any design factor had a significant effect on the bias for the
shift in level, GLM models were run. The model explained 99% of variability after including 4-
way interactions, and indicated the 4-way interaction among the number of cases, the series
length per case, the true level-1 error structure, and the variation in the level-2 errors had a
medium effect (n> = .10). The relationship for the average bias for the shift in level as a function
of the number of cases, the series length per case, the true level-1 error structure, and variation in

the level-2 errors is illustrated with a line graph in Figure 16.
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Figure 16. Line graphs illustrating the relationship of the bias in the shift in level and the four-
way interaction among the number of cases, the series length per case, the variation in the level-2
errors, and the true level-1 error structure.

The line graph shows that there was some variability of the average bias values across the
true level-1 error structures. When the true level-1 error structure was homogeneous, the average

bias values were relatively similar across the number of cases, the series length per case, and the

variation in the level-2 errors. The smallest bias value was found when the number of cases was
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4, the series length per case was 10, and the variation in the level-2 errors was such that most
variance was at level-1 which was a bias of .5 (M= -0.001, SD = 0.004). The largest bias value
was found when the number of case was 4, the series length per case was 20, and the variation in
the level-2 errors was such that most variance was at level-1 which was a bias of .5 (M= -0.022,
SD < 0.001). However, when the true level-1 error structure was the moderately or the severely
heterogeneous, the average bias values were impacted by the level of factors. Specifically, the
average bias values were varied the most across the variation in the level-2 errors when the
number of cases and the series length per case were small which was 4 and 10 respectively.
When the variation in the level-2 errors shifted from most variance at level-1 (0.5) to most
variance at level-2 (2), the average bias values increased for both the moderately or the severely
heterogeneous error structure (from M= -0.025, SD = 0.001; M= 0.028, SD = 0.001, respectively
to M= 0.057, SD = 0.004; M= -0.069, SD = 0.005, respectively).

Average treatment effect for interaction (shift in slope). The average bias values for
the treatment effect for interaction were very similar and close to 0 across the two models
(Model 1 and Model 2) with little variation (n2 =.00059) (Figure 17). The average bias value for
Model 1 was M = 0.0035, SD = 0.008, and the average bias value for Model 2 was M = 0.0031,
SD = 0.008.

The average bias values for the treatment effect for interaction across the two models
were also examined within the three different types of true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 18). The average
bias values were very similar and close to 0 across the two models within the three true level-1

error structures.
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Figure 17. Box plots illustrating the distribution for the average bias values for the shift in slope
across Model 1 which did not model between case variation, and Model 2 which models between

case variation .
The smallest average bias difference between the two models was found when the true level-1
error structure was homogeneous (|M,-M;| = 0.0001), and the biggest average bias difference
between the two models was found when the true level-1 error structure was severely
heterogeneous (|]M>-M;| = 0.001).

However, some variability of the average bias values was found across the true level-1
error structures. The different types of the true level-1 error structures explained a large amount
of the variability (n? = .25) which indicates substantial differences of the average bias across the

true level-1error structures. Specifically, the smallest average bias value was found when the true
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level-1 error structure was severely heterogeneous (Model 1: M= 0.0002, SD = 0.007; Model 2:
M= -0.0007, SD = 0.008), and the largest average bias was found when the true level-1 error

structure was homogeneous (Model 1: M= 0.0088, SD = 0.009; Model 2: M= 0.0089, SD =

0.009).
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Figure 18. Box plots illustrating the distribution for the bias values for the shift in slope across
the two models within the three true level-1 error structures.

In order to further explore if any design factor had a significant effect on the bias for the
shift in slope, GLM models were run. The model explained 95% of the variability after including
3-way interactions. The GLM model found three interaction effects that had a medium effect,
including the 3-way interaction among the number of cases, the series length per case, and the

true level-1 error structure (n° = .10), the 3-way interaction among the number of cases, the
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series length per case, and the variation in the level-2 errors (n2 =.09), and the 3-way interaction
among the series length per case, the true level-1 error structure, and the variation in the level-2
errors (° = .08). These three interaction effects were illustrated using a line graphs in Figure 19,
20, and 21.

The relationship for the average bias for the shift in slope as function of the number of
cases, the series length per case, and the true level-1 error structure is illustrated with line graph
in Figure 19. The graph shows that there was some variability of the average bias values across
the true level-1 error structures. When the true level-1 error structure was moderately or severely
heterogeneous error structure, the average bias value was decreased (close to 0) as the number of
cases increased from 4 to 8, regardless of the series length per case. Specifically, when the
number of cases increased from 4 to 8, the average bias value in the moderately heterogeneous
error structure decreased from M= 0.0074, SD = 0.005 to M= -0.0022, SD = 0.004 for the series
length per case of 10, and from M= 0.0001, SD = 0.005 to M=-0.0001, SD = 0.001 for the series
length per case of 20. The average bias value in the severely heterogeneous error structure
decreased from M= -0.0052, SD = 0.010 to M= 0.0005, SD = 0.002 for the series length per case
of 10, and from M= 0.0022, SD = 0.009 to M= 0.0013, SD = 0.005 for the series length per case
of 20. However, when the true level-1 error structure was homogeneous, the average bias values
were positively biased, and relatively higher than when the true level-1 error structure was
moderately or severely heterogeneous error structure. In addition, the difference of the average
bias across the number of cases was changed depending on the series length per case.
Specifically, when the series length per case was 10, the average bias value was increased from

M=0.0091, SD=0.011 to M= 0.0162, SD = 0.009 as the number of cases was increased from 4
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to 8. When the series length per case was 20, the average bias value was decreased from M=

0.0093, SD = 0.002 to M= 0.0008, SD = 0.004 as the number of cases was increased from 4 to 8.
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Figure 19. Line graph depicting average bias for the shift in slope as a function of the three-way
interaction effect between the number of cases, the series length per case, and the true level-1
error structure.

The relationship for the average bias for the shift in slope as function of the number of
cases, the series length per case, and the variation in the level-2 errors is illustrated with a line
graph in Figure 20. The graph shows that when the number of cases was 8, the average bias

values were increased for both series length per case 10 and 20, regardless of the variation in the

level-2 errors. Specifically, the average bias value was increased from M= 0.0027, SD = 0.004 to
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M= 0.0069, SD = 0.014 for the series length per case of 10, and from M= -0.0020, SD = 0.001 to

M=0.0033, SD = 0.002 for the series length per case of 20.
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Figure 20. Line graph depicting average bias for the shift in slope as a function of the three-way
interaction effect among the number of cases, the series length per case, and the variation in the
level-2 errors.

However, when the number of cases was 4, the average bias values with the series length
per case were dependent on the variation in the level-2 errors. Specifically, when the variation in
the level-2 errors was such that most variance was at level-1 (0.5), the average bias value with
the series length per case of 10 was smaller and negatively biased than the average bias value
with the series length per case of 20 which was relatively high and positively biased, M= -

0.0007, SD = 0.012 and M= 0.0083, SD = 0.003 for the series length per case of 10 and 20,

respectively. When the variation in the level-2 errors was such that most variance was at level-2
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(2), the average bias value with the series length per case of 10 was relatively larger and
positively biased (M= 0.0083, SD = 0.008) than the average bias value with the series length per
case of 20 which was relatively small and negatively biased (M= -0.0006, SD = 0.007).

The relationship for the average bias for the shift in slope as a function of the variation in
the level-2 errors, the series length per case, and the true level-1 error structure is illustrated with
a line graph in Figure 21. The graph shows that there was some variability of the average bias
values across the true level-1 error structures. However, the pattern of the variability across the
true level-1 error structures was changed depending on the series length per case, and the
variation in the level-2 errors. When the series length per case was 20, the average bias values
were changed relatively little across the variation in the level-2 errors for all three true level-1
error structures. The average bias value was changed from M= 0.0042, SD = 0.008 to M= 0.0058,
SD = 0.002 for the homogeneous error structure, from M= 0.0016, SD = 0.003 to M= -0.0016,
SD = 0.003 for the moderately heterogeneous error structure, and from M= 0.0037, SD = 0.007 to
M=-0.0002, SD = 0.006 for the severely heterogeneous error structure. However, when the
series length per case was 10, the average bias values changed more, either decreased or
increased, across the variation in the level-2 errors for all three true level-1 error structures. The
average bias value was decreased from M= 0.006, SD = 0.006 to M= -0.001, SD = 0.005, and
from M=-0.007, SD = 0.007 to M= 0.003, SD = 0.003 for the moderately and the severely
heterogeneous error structure, respectively. The average bias value was increased from M=

0.004, SD = 0.005 to M= 0.021, SD = 0.003 for the homogeneous error structure.
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Figure 21. Line graph depicting average bias for the shift in slope as a function of the three-way
interaction effect among the variation in the level-2 errors, the series length per case, and the true
level-1 error structure.

Root Mean Squared Error (RMSE)

The distribution of RMSE values of the fixed effect for treatment effects (shift in level
and shift in slope) are illustrated in Figures 22 through 31. The full information about the n*
values for the GLM models is also provided in Appendix B.

Average treatment effect for phase (shift in level). The average RMSE values of the
treatment effect for phase were very similar across the two models (Model 1 and Model 2) with
little variation (Figure 22). The average RMSE value for Model 1 was M = 0.68, SD = 0.19, and
the average RMSE value for Model 2 was M = 0.68, SD = 0.28. The type of model explained
little of the variability (n? = .00025).
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Figure 22. Box plots illustrating the distribution for the RMSE values for the shift in level across
Model 1 which did not model between case variation, and Model 2 which models between case

variation.

The average RMSE values of the treatment effect for phase across the two models were
also examined within the three different types of true level-1 error structures (homogeneous,
moderately heterogeneous, and severely heterogeneous) (Figure 23). The average RMSE values
were very similar across the two models within the three true level-1 error structures, and there
were no or little differences across the three true level-1 error structures (T]2 =.001). The smallest
average RMSE difference between the two models was found when the true level-1 error
structure was moderately heterogeneous (|M,-M;| = 0.001), and the biggest average RMSE

difference between the two models was found when the true level-1 error structure was severely

heterogeneous (|M>-M;| = 0.018).

87

www.manaraa.com



|
Homogeneous Moderately Hetero Severely Hetero

1.0 - T T
o
3
e 084
&=
.-
w
QO
<
= o
& < © o o o
w
n
=
o 0.6

0.4 4

I I 1 I I I
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
Type of model

Figure 23. Box plots illustrating the distribution for the RMSE values for the shift in level across
the two models within the three true level-1 error structures.

In order to further explore if any design factor had a significant effect on the RMSE for
the shift in level, a GLM model was run. The main effects only model explained 97% of the
variability and found that three of the design factors had a medium or large effect, including the
number of cases (r|2 = .48), variation in the level-2 errors (r|2 =.38), and the series length per

case (N> =.11). These three main effects are illustrated using a box plots in Figure 24, 25, and

26.
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Figure 24. Box plots depicting the estimated RMSE values for the shift in level as a function of
the number of cases.

As illustrated in Figure 24, as the number of cases increased from 4 to 8, the average
RMSE value decreased from M = 0.81, SD = .16 to M = 0.55, SD = .10. Similarly, Figure 25
shows that the average RMSE value was smaller when the variation in the level-2 errors was
such that most variance was at level-1 (0.5) (M = 0.57, SD = .13) than when the variation in the
level-2 errors was such that most variance was at level-2 (2) (M = 0.79, SD = .16). In addition,
Figure 26 portrays that as the series length per case increased from 10 to 20, the average RMSE

value decreased from M =0.74, SD = .19 to M =0.62, SD = .16.
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Figure 25. Box plots depicting the estimated RMSE values for the shift in level as a function of
the variation in the level-2 errors.
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Figure 26. Box plots depicting the estimated RMSE values for the shift in level as a function of
the series length per case.
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Average treatment effect for interaction (shift in slope). The average RMSE values for
the treatment effect for interaction were very similar across the two models (Model 1 and Model
2) with little variation (Figure 27). The average RMSE value for Model 1 was M = 0.23, SD =
0.08, and the average RMSE value for Model 2 was M = 0.22, SD = 0.08. The type of model

explained little of the variability (n” =.0001).
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Figure 27. Box plots illustrating the distribution of the RMSE values for the shift in slope across
Model 1 which did not model between case variation, and Model 2 which models between case

variation.

The average RMSE values of the treatment effect for interaction across the two models
were also examined within the three different types of true level-1 error structures

(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 28). The average
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RMSE values were very similar across the two models within the three true level-1 error
structures, and there were no or little differences across the three true level-1 error structures (>
=.001). The smallest average RMSE difference between the two models was found when the
true level-1 error structure was moderately heterogeneous (|M>-M;| = 0.0004), and the biggest
average RMSE difference between the two models was found when the true level-1 error

structure was severely heterogeneous (|M>-M;| = 0.0039).
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Figure 28. Box plots illustrating the distribution of the RMSE values for the shift in slope across
the two models within the three true level-1 error structures.

In order to further explore if any design factor had a significant effect on the RMSE
values for shift in slope, a GLM model was run. The main effects only model explained 97% of

the variability. Similar to the GLM result of the phase effect, it was found that three of the design
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factors had a large effect, including the series length per case (n” = .47), the number of cases (1’
= .28), and the variation in the level-2 errors (4> = .22). These three main effects are illustrated
using a box plots in Figure 29, 30, and 31.

As illustrated in Figure 29, as the series length per case increased from 10 to 20, the
average RMSE value decreased from M = 0.28, SD = .06 to M = 0.17, SD = .05. Similarly,
Figure 30 shows that as the number of cases increased from 4 to 8, the average RMSE value

decreased from M = 0.27, SD = .08 to M = 0.18, SD = .06.
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Figure 29. Box plots depicting the estimated RMSE values for the shift in slope as a function of
the series length per case.
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Figure 30. Box plots depicting the estimated RMSE values for the shift in slope as a function of
the number of cases.

In addition, Figure 31 portrays that as the variation in the level-2 errors shifted from most
of the variance at the level-1 error (.5) to most of the variance at the level-2 error (2), the average

RMSE value increased from M =0.19, SD = .07 to M = 0.26, SD = .07.
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Figure 31. Box plots depicting the estimated RMSE values for the shift in slope as a function of
the variation in the level-2 errors.

Credible Interval Coverage

The distribution of CI coverage of the fixed effect for treatment effects (shift in level and
shift in slope) are illustrated in Figures 32 through 38. The full information about the n* values
for the GLM models is also provided in Appendix B.

Average treatment effect for phase (shift in level). The average 95% credible interval
(CI) coverage values of the treatment effect for phase exceeded 95% for both models (Model 1
and Model 2) (Figure 32). The average CI coverage for Model 1 was M = 0.98, SD = 0.01, and
the average CI coverage for Model 2 was M = 0.98, SD = 0.01. The type of model explained

little of the variability (n* = .001).
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Figure 32. Box plots illustrating the distribution for the CI coverage for the shift in level across
Model 1 which did not model between case variation, and Model 2 which models between case
variation.

The average CI coverage values of the treatment effect for phase across the two models
were also examined within the three different types of the true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 33). The average
CI coverage values were very similar across the two models within the three true level-1 error
structures, and there were no or little differences across the true level-1 error structures, with
little of the variability explained by the different types of the true level-1 error structures (n° =

.008). The smallest average CI coverage difference between the two models was found when the

true level-1 error structure was homogeneous (|M>-M;| = 0), and the biggest average CI coverage
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difference between the two models was found when the true level-1 error structure was

moderately heterogeneous (|M>-M;| = 0.002).
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Figure 33. Box plots illustrating the distribution for the CI coverage for the shift in level across
the two models within the three true level-1 error structures.

In order to further explore the variability in the CI coverage for phase effect, a GLM
model was run. The main effects only model explained 94% of the variability. It was found that
one of the design factors, the number of cases, had a large effect (1> = .88). This main effect is
illustrated using a box plots in Figure 34.

As illustrated in Figure 34, as the number of cases increased from 4 to 8, the average CI

coverage approached the nominal level, .95 (from M = 0.997, SD = .002 to M = 0.971, SD =

.006).
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Figure 34. Box plots depicting the estimated CI coverage for the shift in level as a function of
the number of cases.

Average treatment effect for interaction (shift in slope). The average credible interval
(CI) coverage values for the treatment effect for interaction exceeded .95 for the two models
(Model 1 and Model 2) (Figure 35). The average CI coverage value for Model 1 was M = 0.985,
SD = 0.01, and the average CI coverage value for Model 2 was M = 0.986, SD = 0.01. The type

of model explained little of the variability (n? =.0003).
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Figure 35. Box plots illustrating the distribution for the CI coverage for the shift in slope across
Model 1 which did not model between case variation, and Model 2 which models between case
variation.

The average CI coverage values of the treatment effect for interaction across the two
models were also examined within the three different types of true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 36). The average
CI coverage values were very similar across the two models within the three true level-1 error
structures, and there were no or little differences across the true level-1 error structures, with
little of the variability explained by the different types of the true level-1 error structures (n° =

.0005). The smallest average CI coverage difference between the two models was found when

the true level-1 error structure was moderately heterogeneous (|]M>-M;| = 0.0000), and the biggest
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average CI coverage difference between the two models was found when the true level-1 error

structure was severely heterogeneous (|M>-M;| = 0.0009).
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Figure 36. Box plots illustrating the distribution of the CI coverage for the shift in slope across
the two models within the three true level-1 error structures.

In order to further explore the variability in the CI coverage for the treatment effect for
interaction, GLM models were run. The model explained 96% of variability after including 2-
way interactions. The GLM model found two of the design factors that had a medium or large
effect, including the number of cases (1> = .83) and the series length per case (n°> = .08). These

two main effects are illustrated in Figures 37 and 38.
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Figure 37. Box plots depicting the estimated CI coverage for the shift in slope as a function of
the number of cases.

Similar to the GLM result of the phase effect, Figure 37 portrays that as the number of
cases increased from 4 to 8, the average CI coverage approached the nominal level, .95 (from M
=0.997, SD =.003 to M =0.973, SD = .007).

Similarly, Figure 38 depicts that as the series length per case increased from 10 to 20, the

average CI coverage approached the nominal level, .95 (from M = 0.989, SD = .01 to M = 0.982,

SD = .01).
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Figure 38. Box plots depicting the estimated CI coverage for the shift in slope as a function of
the series length per case.

Credible Interval Width

The distribution of CI width of the fixed effect for treatment effects (shift in level and
shift in slope) are illustrated in Figures 39 through 47. The full information about the n’ values
for the GLM models is also provided in Appendix B.

Average treatment effect for phase (shift in level). The average credible interval (CI)
width values of the treatment effect for phase were very similar across the two models (Model 1
and Model 2) (Figure 39). The average CI width value for Model 1 was M =4.96, SD =2.47, and
the average CI width value for Model 2 was M =4.95, SD = 2.47. The type of model explained

little of the variability (n> <.00001).
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Figure 39. Box plots illustrating the distribution for the CI width for the shift in level across
Model 1 which did not model between case variation, and Model 2 which models between case
variation.

The average CI width values of the treatment effect for phase across the two models were
also examined within the three different types of true level-1 error structures (homogeneous,
moderately heterogeneous, and severely heterogeneous) (Figure 40). The average CI width
values were very similar across the two models within the three true level-1 error structures, and
there were no or little differences across the three true level-1 error structures, with little of the
variability explained by the different types of the true level-1 error structures (n> = .0002). The
smallest average CI width difference between the two models was found when the true level-1

error structure was moderately heterogeneous (|M,-M;| = .01), and the biggest average CI width
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difference between the two models was found when the true level-1 error structure was severely

heterogeneous (|M>-M;| = .06).
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Figure 40. Box plots illustrating the distribution of the CI width for the shift in level across the
two models within the three true level-1 error structures.

In order to further explore the variability in the CI width of the treatment effect for phase,
a GLM model was run. The main effects only model explained 97% of the variability. It was
found that two of the design factors had a medium or large effect, including the number of cases

(n® = .84) and the variation in the level-2 errors (7> =.12). These main effects are illustrated in

Figure 41 and 42.
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Figure 41. Box plots depicting the estimated CI width for the shift in level as a function of the
number of cases.

As illustrated in Figure 41, as the number of cases increased from 4 to 8, the average CI
width decreased from M =7.17, SD = 1.30 to M = 2.74, SD = 0.50. Similarly, as the variation in
the level-2 errors shifted from most of the variance at the level-1 error (.5) to most of the

variance at the level-2 error (2), the average CI width increased from M =4.13, SD=1.92 to M =

5.78, SD = 2.67.
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Figure 42. Box plots depicting the estimated CI width for the shift in level as a function of the
variation in the level-2 errors.

Average treatment effect for interaction (shift in slope). The average credible interval
(CI) width values for the treatment effect for interaction were very similar across the two models
(Model 1 and Model 2) (Figure 43). The average CI width value for Model 1 was M =1.68, SD =
0.96, and the average CI width value for Model 2 was M = 1.68, SD = 0.95. The type of model

explained little of the variability (n? =.00003).
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Figure 43. Box plots illustrating the distribution of the CI width values for the shift in slope
across Model 1 which did not model between case variation, and Model 2 which models between
case variation.

The average CI width values of the treatment effect for interaction across the two models
were also examined within the three different types of true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 44). The average
CI width values were very similar across the two models within the three true level-1 error
structures, and there were no or little differences across the three true level-1 error structures,
with little of the variability explained by the different types of the true level-1 error structures (1’

=.0005). The smallest average CI width difference between the two models was found when the

true level-1 error structure was homogeneous (|M>-M;| =.001), and the biggest average CI width
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difference between the two models was found when the true level-1 error structure was severely

heterogeneous (|M>-M;| = .030).
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Figure 44. Box plots illustrating the distribution of the CI width values for the shift in slope
across the two models within the three true level-1 error structures.

In order to further explore the variability in the CI width of the treatment effect for
interaction, a GLM model was run. The main effects only model explained 94% of the
variability. It was found that three of the design factors had a medium or large effect, including

the number of cases (n° = .65), the series length per case (n> = .19), and the variation in the level-

2 errors (n° = .10).
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Figure 45. Box plots depicting the estimated CI width for the shift in slope as a function of the
number of cases.

These main effects are illustrated in Figure 45, 46, and 47. As illustrated in Figure 45, as
the number of cases increased from 4 to 8, the average CI width decreased from M = 2.44, SD =
0.75 to M =0.92, SD = 0.29. Similarly, as the series length per case increased from 10 to 20, the

average CI width decreased from M =2.09, SD = 1.01 to M =1.27, SD = 0.68.
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Figure 46. Box plot depicting the estimated CI width for the shift in slope as a function of the
series length per case.
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Figure 47. Box plot depicting the estimated CI width for the shift in slope as a function of the
variation in the level-2 errors.
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In addition, as the variation in the level-2 errors shifted from most of the variance at the level-1
error to most of the variance at the level-2 error, the average CI width increased from M = 1.39,
SD =0.81to M =1.97, SD = 1.00.

In addition to the examination of the average fixed treatment effects, individual treatment
effects were also examined in terms of the four outcome measures (Bias, RMSE, CI coverage
and width). The results of the individual treatment effects were similar with the average fixed
treatment effects across all outcome measures. Although the CI coverage and the widths of the
individual treatment effects were closer to the nominal level, and narrower than the CI coverage
and the widths of the average treatment effects, there was no substantial difference across the
two models, which is consistent with the average treatment effects results. Since the interest of
the current study is focused on the average treatment effects rather than the individual treatment
effects, and the results of both the average and the individual treatment effects were very similar,
the results of the average treatment effects were only provided in this section. However, the
summary table and the figures of the individual treatment effects were provided in Appendix C

for the researchers who are interested in the results of the individual treatment effects.

Variance Components

The second research question considers the estimates of the variance components and the
consequences of modeling and not modeling between case variation in the level-1 error structure.
More specifically, (1) the bias and the RMSE for the variance components as function of the
design and data factors, and (2) the credible interval coverage and width for the variance

components as function of the design and data factors. All variance components parameters
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results are displayed in standard deviation units, since the results of the variance components

parameters were produced in the standard deviation units in all analyses.

Bias

The distribution of bias values of the level-2 error standard deviation of intervention
effects (shift in level and shift in slope), the level-1 error standard deviation, and autocorrelation
are illustrated in Figures 48 through 62. Relative bias values for the all parameters are provided
in Appendix A. The full information about the n* values for the GLM models is also provided in
Appendix B.

Level-2 error standard deviation for phase (shift in level). The average bias values of
the level-2 error standard deviation (SD) for phase were similar and positively biased across the
two models (Model 1 and Model 2) with little variability explained by the type of model (n*> =
.00005) (Figure 48). The average bias value for Model 1 and Model 2 was M = 0.86, SD = 0.64
and M = 0.85, SD = 0.63, respectively.

The average bias values were similar across the two models within the three true level-1
error structures. The different types of the true level-1 error structures explained little of the
variability (1* = .0004) which indicates similarity of the average bias across the true level-lerror
structures. Specifically, the smallest average bias value was found when the true level-1 error
structure was moderately heterogeneous and estimated by Model 2 (M= 0.83, SD = .66), and the
largest average bias was found when the true level-1 error structure was severely heterogeneous

and estimated by Model 1 (M= 0.87, SD = .69).
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Figure 48. Box plots illustrating the distribution of the bias values for the level-2 error standard
deviation of shift in level across Model 1 which did not model between case variation, and
Model 2 which models between case variation.

In addition, there were very little differences across the two models within the three
different types of the true level-1 error structures. The smallest average bias difference between
the two models was found when the true level-1 error structure was homogeneous (|M,-M;| =

0.001), and the biggest average bias difference between the two models was found when the true

level-1 error structure was severely heterogeneous (|M,-M;| = 0.018).
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Figure 49. Box plots illustrating the distribution of the bias values for the level-2 error standard
deviation of phase across the two models within the three true level-1 error structures.

In order to further explore if any design factor had a significant effect on the bias of the
level-2 error standard deviation for the shift in level, a GLM model was run. The main effects
only model explained 98% of the variability, and indicated one of the design factors, the number
of cases, had a large effect (n? = .96). This main effect is illustrated using box plots in Figure 50.

As illustrated in Figure 50, as the number of cases increased from 4 to 8, the average bias

value decreased from M =1.46, SD = 0.18 to M = 0.25, SD = 0.04.
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Figure 50. Box plots depicting the estimated bias of the level-2 error standard deviation for the
shift in level as a function of the number of cases.

Level-2 error standard deviation for interaction (shift in slope). The average bias
values of the level-2 error standard deviation for interaction were similar and positively biased
across the two models (Model 1 and Model 2) with little variability explained by the type of
model (n* =.0002) (Figure 51). The average bias value for Model 1 and Model 2 was M = 0.31,

SD =0.26 and M = 0.30, SD = 0.25, respectively.
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Figure 51. Box plots illustrating the distribution of the bias values for the level-2 error standard
deviation of shift in slope across Model 1 which did not model between case variation, and
Model 2 which models between case variation.

The average bias values for the level-2 error standard deviation of the interaction effect
across the two models were also examined within the three different types of true level-1 error
structures (homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 52).
The average bias values were similar across the two models within the three true level-1 error
structures. The different types of the true level-1 error structures explained little of the variability
(n® = .0004) which indicates similarity of the average bias across the true level-lerror structures.
Specifically, the smallest average bias value was found when the true level-1 error structure was

moderately heterogeneous and estimated by Model 2 (M= 0.29, SD = .26), and the largest
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average bias was found when the true level-1 error structure was severely heterogeneous and
estimated by Model 1 (M= 0.31, SD = .27). In addition, there were very little differences across
the two models within the three different types of true level-1 error structures. The smallest
average bias difference between the two models was found when the true level-1 error structure
was homogeneous (|M>-M;| = 0.003), and the biggest average bias difference between the two

models was found when the true level-1 error structure was severely heterogeneous (|M>-M;| =

0.012).
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Figure 52. Box plots illustrating the distribution for the bias values of the level-2 error standard
deviation for the shift in slope across the two models within the three true level-1 error
structures.

In order to further explore if any design factor had a significant effect on the bias of the

level-2 error standard deviation for the shift in slope, GLM models were run. The model
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explained over 99% of the variability after including 2-way interactions, and indicated a 2-way

interaction between the number of cases and the series length per case had a medium effect (1

.07). This interaction effect is illustrated using a line graph in Figure 53.

Bias of the level-2 error SD for interaction
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| Series length per case =@ 10 = = — 20 |

Figure 53. Line graph depicting average bias for the level-2 error standard deviation of shift in
slope as a function of the two-way interaction effect between the number of cases and the series
length per case.

The line graph shows that the effect of the number of cases (from 4 to 8) on the mean
bias value was dependent on the series length per case. Specifically, when the series length per

case was 10, mean bias value decreased greatly as the number of cases increased from 4 (M =

0.68, SD = 0.41) to 8(M = 0.12, SD =0.02). However, when the series length per case was 20,
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mean bias value decreased less as the number of cases increased from 4 (M = 0.35, SD = 0.08) to
8(M = 0.06, SD =0.02).

Level-1 error standard deviation. The average bias values of the level-1 error standard
deviation were similar and positively biased across the two models (Model 1 and Model 2) with
little variability explained by the type of model (n? = .005) (Figure 54). The average bias value

for Model 1 and Model 2 was M = 0.05, SD = 0.03 and M = 0.04, SD = 0.02, respectively.
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Figure 54. Box plots illustrating the distribution of the bias values for the level-1 error standard
deviation across Model 1 which did not model between case variation, and Model 2 which
models between case variation.
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Figure 55. Box plots illustrating the distribution for the level-1 error standard deviation across
the two models within the three true level-1 error structures.

The average bias values for the level-1 error standard deviation across the two models
were also examined within the three different types of true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 55). The figure
illustrated that the average bias values were different across the two models within the three true
level-1 error structures with large variability explained by the different types of the true level-1
error structures (n” = .223). Specifically, the level-1 error standard deviation parameter tended to
be more biased when estimated by Model 2 than Model 1 in the case that the true level-1 error
structure was either homogeneous or moderately heterogeneous. However, the level-1 error

standard deviation parameter tended to be more biased when estimated by Model 1 than Model 2
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in the case that the true level-1 error structure was severely heterogeneous. In addition, the
smallest average bias difference between the two models was found when the true level-1 error
structure was moderately heterogeneous (|M>-M;| = 0.006), and the biggest average bias
difference between the two models was found when the true level-1 error structure was severely

heterogeneous (|M,-M;| = 0.025).
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Figure 56. Box plots depicting the estimated bias of the level-1 error standard deviation as a
function of the series length per case.

In order to further explore if any design factor had a significant effect on the bias for the
level-1 error standard deviation, GLM models were run. The model explained 99% of the
variability after including 2-way interactions, and indicated three main effects and one 2-way

interaction had a medium or large effect, including the series length per case (> = .25), the
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variation in the level-2 errors (n° = .19), the number of cases (n° =.11), and the 2-way interaction
between the type of model and the true level-1 error structure (n° = .10). These main and

interaction effects are illustrated in Figures 56 through 59.
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Figure 57. Box plots depicting the estimated bias of the level-1 error standard deviation as a
function of the variation in the level-2 errors.

As illustrated in Figure 56, as the series length per case increased from 10 to 20, the
average bias value decreased from M = 0.06, SD = 0.03 to M = 0.03, SD = 0.02. In addition,
Figure 57 portrays that as the variation in the level-2 errors shifted from most of the variance at
the level-1 error (.5) to most of the variance at the level-2 error (2), the average bias value

increased from M = 0.033, SD = .02 to M = 0.055, SD = .03. Similarly, Figure 58 shows that as
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the number of cases increased from 4 to 8, the average bias value decreased from M = 0.053, SD

=.03 to M =0.036, SD = .02.
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Figure 58. Box plots depicting the estimated bias of the level-1 error standard deviation as a
function of the number of cases.

Figure 59 illustrated the interaction between the type of model and the true level-1 error
structure on the average bias of the level-1 error standard deviation. The line graph shows that
the effect of the true level-1 error structure on the mean bias was dependent on the type of
model. Specifically, for Model 1, mean bias increased constantly as the true level-1 error
structure shifts from homogeneous (M = 0.025, SD = 0.02) to moderately (M = 0.042, SD = 0.02)
and severely (M =0.071, SD = 0.02) heterogeneous error structure. However, for Model 2, mean
bias increased as the true level-1 error structure shifts from homogeneous (M = 0.034, SD = 0.02)

123

www.manharaa.com




to moderately heterogeneous (M = 0.048, SD = 0.03) error structure, but decreased as the true
level-1 error structure shifts from moderately heterogeneous to severely heterogeneous (M =

0.046, SD = 0.03).
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Figure 59. Line graph depicting average bias for the level-1 error standard deviation as a
function of the two-way interaction effect between the type of model and the true level-1 error
structure.

Autocorrelation. The average bias values of the autocorrelation were similar and
negatively biased across the two models (Model 1 and Model 2) with little variability explained

by the type of model (n? = .004) (Figure 60). The average bias value for Model 1 and Model 2

was M =-0.10, SD = 0.09 and M = -0.09, SD = 0.08, respectively.
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Figure 60. Box plots illustrating the distribution of the bias values for the autocorrelation across
Model 1 which did not model between case variation, and Model 2 which models between case
variation.

The average bias values for the autocorrelation across the two models were also
examined within the three different types of true level-1 error structures (homogeneous,
moderately heterogeneous, and severely heterogeneous) (Figure 61). The figure illustrated that
the average bias values were slightly different across the two models within the three true level-1
error structures. The smallest average bias difference between the two models was found when

the true level-1 error structure was homogeneous (|M>-M;| = 0.008), and the biggest average bias

difference between the two models was found when the true level-1 error structure was severely
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heterogeneous (|M>-M;| = 0.024). In addition, the autocorrelation parameter tended to be more
biased when estimated by Model 1 than Model 2 for all three types of the level-1 error structures.
The box plots also portrays that there were substantial differences across three different
types of the true level-1 error structures, with large variability explained by the type of the true
level-1 error structure (n° = .88). Specifically, the autocorrelation parameter tended to be more
biased when the true level-1 error structure was the one of the heterogeneous error structures

than homogeneous error structure, regardless of the type of model.
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Figure 61. Box plots illustrating the distribution of the bias values for the autocorrelation across
the two models within the three true level-1 error structures.

In order to further explore if any design factor had a significant effect on the bias for the
autocorrelation, a GLM model was run. The main effects only model explained 96% of the
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variability, and indicated one of the design factors, the true level-1 error structure (n° = .88), had
a large effect. This main effect is illustrated using box plots in Figure 62.

As illustrated in Figure 62, the autocorrelation parameter tended to be more biased when
the true level-1 error structure was one of the heterogeneous error structures than homogeneous
error structure. The average bias value for the homogeneous error structure was M = 0.018, SD =
.03, and the average bias value for the moderately and severely heterogeneous error structures

was M =-0.153, SD = .03, and M = -0.154, SD = .03, respectively.
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Figure 62. Box plots depicting the estimated bias of the autocorrelation as a function of the true
level-1 error structure.

127

www.manharaa.com




Root Mean Squared Error (RMSE)

The distribution of RMSE values of the level-2 error standard deviation for intervention
effects (shift in level and shift in slope), the level-1 error standard deviation, and the
autocorrelation are illustrated in Figures 63 through 78. The full information about the n* values
for the GLM models is provided in Appendix B.

Level-2 error standard deviation for phase (shift in level). The average RMSE values
of the level-2 error standard deviation for phase were very similar across the two models (Model
1 and Model 2) with little variability explained by the type of model (n” = .0002) (Figure 62).
The average RMSE value for Model 1 was M = 1.23, SD = 0.68, and the average RMSE value

for Model 2 was M =1.21, SD = 0.67.
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Figure 63. Box plots illustrating the distribution of the RMSE values for the level-2 error
standard deviation of the shift in level across Model 1 which did not model between case
variation, and Model 2 which models between case variation.
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Figure 64. Box plots illustrating the distribution of the RMSE values for the level-2 error
standard deviation of shift in level across the two models within the three true level-1 error
structures.

The average RMSE values of the level-2 error variance for phase across the two models
were also examined within the three different types of true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 64). The average
RMSE values were very similar across the two models within the three true level-1 error
structures, and there were little differences across the true level-1 error structures, with very little
of the variability explained by the different types of the true level-1 error structures (n> = .0003).

However, the average RMSE value for Model 1 was larger than the average RMSE value for

Model 2 for all three true level-1 error structures. The smallest average RMSE difference
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between the two models was found when the true level-1 error structure was homogeneous (|M>-
M;| = 0.005), and the biggest average RMSE difference between the two models was found
when the true level-1 error structure was severely heterogeneous (|M,-M;| = 0.032).

In order to further explore if any design factor had a significant effect on the RMSE of
the level-2 error standard deviation for the shift in level, a GLM model was run. The main effects
only model explained 98% of the variability and found that two of the design factors had a
medium or large effect, including the number of cases (> = .89), and the variation in the level-2

errors (> = .08). These two main effects are illustrated in Figures 65 and 66.
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Figure 65. Box plots depicting the estimated RMSE values of the level-2 error standard
deviation for the shift in level as a function of the number of cases.
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Figure 66. Box plots depicting the estimated RMSE values of the level-2 error standard
deviation of the shift in level as a function of the variation in the level-2 errors.

As illustrated in Figure 65, as the number of cases increased from 4 to 8, the average
RMSE values decreased from M = 1.84, SD = .30 to M = 0.60, SD = .12. Similarly, Figure 65
shows that as the variation in the level-2 errors shifted from most of the variance at the level-1
error (.5) to most of the variance at the level-2 error (2), the average RMSE values increased
from M =1.03, SD=.56to M =1.41, SD = .71.

Level-2 error standard deviation for interaction (shift in slope). The average RMSE
values of the level-2 error standard deviation for the interaction effect were very similar across

the two models (Model 1 and Model 2) with little variability explained by the type of model (1>
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=.0003) (Figure 67). The average RMSE value for Model 1 was M = 0.42, SD = .27, and the

average RMSE for Model 2 was M =0.41, SD = .27.
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Figure 67. Box plots illustrating the distribution of the RMSE values for the level-2 error
standard deviation for shift in slope across Model 1 which did not model between case variation,
and Model 2 which models between case variation.

The average RMSE values of the level-2 error standard deviation for the interaction
effect across the two models were also examined within the three different types of true level-1
error structures (homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure
68). The average RMSE values were very similar across the two models within the three true

level-1 error structures, and there was little difference across the true level-1 error structures,

with very little of the variability explained by the different types of the true level-1 error
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structures (1> = .0002). Similar to the result of the level-2 error standard deviation for phase, the
average RMSE value for Model 1 was larger than the average RMSE value for Model 2 for the
all three true level-1 error structures. The smallest average RMSE difference between the two
models was found when the true level-1 error structure was homogeneous (|M,-M;| = 0.004), and
the biggest average RMSE difference between the two models was found when the true level-1

error structure was severely heterogeneous (|M,-M;| = 0.016).
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Figure 68. Box plots illustrating the distribution of the RMSE values for the level-2 error
standard deviation for shift in slope across the two models within the three true level-1 error
structures.

In order to further explore if any design factor had a significant effect on the RMSE

values of the level-2 error standard deviation for shift in slope, GLM models were run. The
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model explained over 99% of the variability after including 2-way interactions. The model
indicated that two of the design factors had a medium or large effect, including the number of
cases (n° =.73) and the series length per case (n” = .13). These two main effects are illustrated
in Figures 69 and 70.

As illustrated in Figure 69, as the number of cases increased from 4 to 8, the average
RMSE values decreased from M = 0.64, SD = .19 to M =0.19, SD = .05. Similarly, Figure 70
shows that as the series length per case increased from 10 to 20, the average RMSE values

decreased from M = 0.51, SD = .30 to M =0.32, SD = .19.
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Figure 69. Box plots depicting the estimated RMSE values of the level-2 error standard
deviation for shift in slope as a function of the number of cases.
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Figure 70. Box plots depicting the estimated RMSE values of the level-2 error standard
deviation for shift in slope as a function of the series length per case.

Level-1 error standard deviation. The average RMSE values of the level-1 error

standard deviation were different across the two models (Model 1 and Model 2) with little

variability explained by the type of model (n*> = .05) (Figure 71). The average RMSE value for

Model 1 was bigger than the average RMSE for Model 2, and Model 1 had more variability of

the RMSE values than Model 2. The average RMSE value for Model 1 and Model 2 was M =

0.22, SD = .10 and M = 0.18, SD = 0.05, respectively.

135

www.manharaa.com



0.3

RMSE for the level-1 error SD

0.1 4

Model1 Model 2
Type of model

Figure 71. Box plots illustrating the distribution of the RMSE values for the level-1 error
standard deviation across Model 1 which did not model between case variation, and Model 2
which models between case variation.

The average RMSE values for the level-1 error standard deviation across the two models
were also examined within the three different types of true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 72). The figure
illustrated that the average RMSE values were different across the two models within the three
true level-1 error structures, with large variability explained by the different types of the true
level-1 error structures (n° = .62). Specifically, the average RMSE value of the level-1 error
standard deviation tended to be larger when estimated by Model 2 than Model 1, and when the

true level-1 error structure was homogeneous. However, the average RMSE value of the level-1
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error standard deviation tended to be smaller when estimated by Model 2 than Model 1, and
when the true level-1 error structure was one of the heterogeneous error structures. In addition,
the smallest average RMSE difference between the two models was found when the true level-1
error structure was moderately heterogeneous (|M,-M;| = 0.02), and the biggest average RMSE
difference between the two models was found when the true level-1 error structure was severely

heterogeneous (|M>-M;| = 0.13).

Homogeneous Moderately Hetero Severely Hetero
©
1T
0.3
()
3 T
S
T
3 T .
@
£ 02- T o
S
= <o
=
% 1
=
<o
01- T

I I I I I I
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Type of model

Figure 72. Box plots illustrating the distribution of RMSE of the level-1 error standard deviation
across the two models within the three true level-1 error structures.

In order to further explore if any design factor had a significant effect on the RMSE value
of the level-1 error standard deviation, GLM models were run. The model explained 99% of the

variability after including 2-way interactions, and indicated one main effect and one interaction
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effect had a medium or large effect, including the series length per case (> = .11) and the 2-way
interaction between the type of model and the true level-1 error structure (n” = .16). These main
and interaction effects are illustrated in Figures 73 and 74.

As illustrated in Figure 73, as the series length per case increased from 10 to 20, the

average RMSE value decreased from M = 0.23, SD = 0.08 to M =0.17, SD = 0.08.
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Figure 73. Box plots depicting the estimated RMSE values of the level-1 error standard
deviation as a function of the series length per case.

Figure 74 illustrates the interaction between the type of model and the type of true level-1
error structure on the average RMSE value of the level-1 error standard deviation. The line graph
shows that the effect of the true level-1 error structure on the mean RMSE value was dependent

on the type of model. Specifically, mean RMSE increased constantly as the true level-1 error
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structure shifts from homogeneous (M = 0.025, SD = 0.02) to moderately (M = 0.042, SD = 0.02)
and severely (M = 0.071, SD = 0.02) heterogeneous error structure for both Model 1 and Model
2. However, mean RMSE increased more rapidly for Model 1 than Model 2. Model 1 started
with a smaller mean RMSE value than Model 2 when the true level-1 error structure was
homogeneous (M = 0.11, SD = 0.04; M = 0.14, SD = 0.04, respectively). However, the mean
RMSE value for Model 1 became larger than the mean RMSE value for Model 2 as the true
level-1 error structure shifts to moderately (M = 0.20, SD = 0.02; M = 0.18, SD = 0.04,
respectively) and severely (M = 0.35, SD =0.02; M = 0.22, SD = 0.05, respectively)

heterogeneous error structure.
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Figure 74. Line graph depicting average RMSE for the level-1 error variance as a function of the
two-way interaction effect between the type of model and the true level-1 error structure.

139

www.manharaa.com




Autocorrelation. The average RMSE values of the autocorrelation were similar across
the two models (Model 1 and Model 2) with little variability explained by the type of model (1’
=.002) (Figure 75). The average RMSE value for Model 1 and Model 2 was M = 0.26, SD =

0.07 and M = 0.25, SD = 0.06, respectively.
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Figure 75. Box plots illustrating the distribution for the RMSE values for the autocorrelation
across Model 1 which did not model between case variation, and Model 2 which models between
case variation.

The average RMSE values for the autocorrelation across the two models were also
examined within the three different types of true level-1 error structures (homogeneous,

moderately heterogeneous, and severely heterogeneous) (Figure 76). The figure illustrated that

the average RMSE values were slightly different across the two models within the three true
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level-1 error structures. The smallest average RMSE difference between the two models was

found when the true level-1 error structure was homogeneous (|M,-M;| = 0.004), and the biggest

average RMSE difference between the two models was found when the true level-1 error

structure was severely heterogeneous (|M>-M;| = 0.016). In addition, the average RMSE value of

the autocorrelation tended to be larger when estimated by Model 2 than Model 1, and when the

true level-1 error structure was homogeneous. On the contrary, the average RMSE value of the

autocorrelation tended to be smaller when estimated by Model 2 than Model 1, and when the true

level-1 error structure was one of the heterogeneous error structures. Moreover, Model 1 had

more variability of the RMSE values than Model 2.
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Figure 76. Box plots illustrating the distribution of the RMSE values for the autocorrelation

across the two models within the three true level-1 error structures.
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Figure 76 also portrays that there were substantial differences across three different types
of the true level-1 error structures (” = .62). Specifically, average RMSE values of the
autocorrelation parameter tended to be larger when the true level-1 error structure was one of the

heterogeneous error structures than when it was homogeneous error structure, regardless of the

type of model.
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Figure 77. Box plots depicting the estimated RMSE value of the autocorrelation as a function of
the true level-1 error structure.

In order to further explore if any design factor had a significant effect on the RMSE value
for the autocorrelation, a GLM model was run. The main effects only model explained 94% of

the variability, and indicated two of the design factors had a medium or large effect, including
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the true level-1 error structure (n° = .83) and the series length per case (> = .06). These main

effects are illustrated in Figures 77 and 78.
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Figure 78. Box plots depicting the estimated RMSE of the autocorrelation as a function of the
series length per case.

As illustrated in Figure 77, the average RMSE value of the autocorrelation tended to be
increased as the true level-1 error structure shifted from homogeneous to heterogeneous. The
average RMSE value for the homogeneous error structure was M = 0.17, SD = .04, and the
average RMSE value for the moderately and severely heterogeneous error structures was M =
0.26, SD = .02, and M = 0.32, SD = .02, respectively. In addition, Figure 78 portrays that the
average RMSE value was decreased from M = 0.27, SD = .06 to M = 0.24, SD = .07, as the series
length per case increased from 10 to 20.
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Credible Interval Coverage

The distribution of credible interval coverage values of the level-2 error standard
deviation for intervention effects (shift in level and shift in slope), the level-1 error standard
deviation, and the autocorrelation are illustrated in Figures 79 through 96. The full information
about the n*values for the GLM models is provided in Appendix B.

Level-2 error standard deviation for phase (shift in level). The average credible
interval (CI) coverage value of the level-2 error standard deviation for phase were over the
nominal value (.95) across the two models with some of the variability explained by the type of
model (n* = .07) (Figure 79). The average CI coverage value for Model 1 was M = 0.968, SD =

0.01, and the average CI coverage for Model 2 was M = 0.973, SD = 0.01.
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Figure 79. Box plots illustrating the distribution of the CI coverage values of the level-2 error
standard deviation for shift in level across Model 1 which did not model between case variation,
and Model 2 which models between case variation.
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Figure 80. Box plots illustrating the distribution of the CI coverage values of the level-2 error
standard deviation for shift in level across the two models within the three true level-1 error
structures.

The average CI coverage values of the level-2 error standard deviation for phase across
the two models were also examined within the three different types of true level-1 error
structures (homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 80).
The average CI coverage values were slightly different across the two models within the three
true level-1 error structures, and there were little differences across the three true level-1 error
structures, with little of the variability explained by the different types of the true level-1 error

structures (1> = .02). The smallest average CI coverage difference between the two models was

found when the true level-1 error structure was homogeneous (|M,-M;| = 0.003), and the biggest
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average CI coverage difference between the two models was found when the true level-1 error
structure was moderately heterogeneous (|M>-M;| = 0.006). Generally, CI coverage for Model 2
tended to be more overly conservative than CI coverage for Model 1.

In order to further explore the variability in the CI coverage values for phase effect, GLM
models were run. The model explained 99% of variability after including 4-way interactions, and
indicated two main effects and one interaction effect had a medium or large effect, including the
variation in the level-2 errors (n° = .29), the type of model (n> = .07), the 3-way interaction
among the series length per case, the number of cases, and the true level-1 error structure (n* =

.11). These main and interaction effects are illustrated in Figures 81 through 83.
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Figure 81. Box plots depicting the estimated CI coverage of the level-2 error standard deviation
for shift in level as a function of the variation in the level-2 errors.
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Figure 82. Box plots depicting the estimated CI coverage of the level-2 error standard deviation
for shift in level as a function of the type of model.

As illustrated in Figure 81, as the variation in the level-2 errors shifted from most of the
variance at the level-1 error (.5) to most of the variance at the level-2 error (2), the average CI
coverage approached the nominal level, .95 (from M = 0.975, SD = .005 to M = 0.966, SD =
.009). Similarly, Figure 82 shows that the CI coverage of Model 2 (M = 0.973, SD = .008) was
more overly conservative than the CI coverage for Model 1 (M = 0.969, SD = .009).

Figure 83 indicated that when the true level-1 error structure was either homogeneous or
moderately heterogeneous, the CI coverage decreased to the nominal level, .95, as the series
length per case increased from 10 to 20, regardless of the number of cases. However, when the

true level-1 error structure was severely heterogeneous, the relationship between CI coverage
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and the series length per case was dependent on the number of cases. When the number of case
was 8, the CI coverage approached the nominal level, .95, as the series length per case increased
from 10 to 20. However, when the number of cases was 4, the CI coverage increased to a more

conservative level as the series length per case increased from 10 to 20.
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Figure 83. Line graph depicting average CI coverage of the level-2 error standard deviation for
phase as a function of the three-way interaction effect among the number of cases, series length
per case, and the true level-1 error structure.

Level-2 error standard deviation for interaction (shift in slope). The average credible
interval (CI) coverage values of the level-2 error standard deviation for interaction were over the

nominal value across the two models (Model 1 and Model 2) (Figure 84). The average CI
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coverage value for Model 1 was M = 0.974, SD = 0.01, and the average CI coverage for Model 2

was M =0.979, SD = 0.01. The type of model explained some of the variability (n* = .06).
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Figure 84. Box plots illustrating the distribution of the CI coverage of the level-2 error standard
deviation for shift in slope across Model 1 which did not model between case variation, and
Model 2 which models between case variation.

The average CI coverage values of the treatment effect for interaction across the two
models were also examined within the three different types of true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 85). The average
CI coverage values were slightly different across the two models within the three true level-1

error structures, and there were some differences across the true level-1 error structures, with a

small amount of the variability explained by the different types of the true level-1 error structures
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(n® = .05). The smallest average CI coverage difference between the two models was found when

the true level-1 error structure was homogeneous (|M>-M;| = 0.005), and the biggest average CI

coverage difference between the two models was found when the true level-1 error structure was

severely heterogeneous (|M,-M;| = 0.008). Generally, the CI coverage for Model 2 tended to be

more overly conservative than the CI coverage for Model 1.
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Figure 85. Box plots illustrating the distribution of the CI coverage for the level-2 error standard
deviation for shift in slope across the two models within the three true level-1 error structures.

In order to further explore the variability in the CI coverage of the level-2 error standard

deviation for interaction, GLM models were run. The model explained 95% of variability after

including 2-way interactions. The GLM model found two of the design factors and one

interaction effect that had a medium or large effect, including the series length per case (° =
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.65), the type of model (n” = .06), and the 2-way interaction between the variation in the level-2
errors and the true level-1 error structure (> = .07). These main and interaction effects were
illustrated in Figures 86 through 88.

Figure 86 portrays that as the series length per case increased from 10 to 20, the average
CI coverage approached the nominal level, .95 (from M = 0.986, SD = .005 to M = 0.965, SD =
.01). Similarly, Figure 87 depicts that the CI coverage for Model 2 (M =0.97, SD = .01) tended

to be more overly conservative than the CI coverage for Model 1 (M = 0.98, SD = .01).
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Figure 86. Box plots depicting the estimated CI coverage of the level-2 error standard deviation
for shift in slope as a function of the series length per case.
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Figure 87. Box plots depicting the estimated CI coverage of the level-2 error standard deviation
for shift in slope as a function of the type of model.

A line graph, Figure 87, depicts that the interaction between variation in the level-2 errors
and CI coverage was dependent on the true level-1 error structure. When the true level-1 error
structure was either homogeneous or moderately heterogeneous, as the variation in the level-2
errors shifted from most of the variance at the level-1 error (.5) to most of the variance at the
level-2 error (2), the average CI coverage approached the nominal level, .95. However, when the
true level-1 error structure was severely heterogeneous, as the variation in the level-2 errors
shifted from most of the variance at the level-1 error (.5) to most of the variance at the level-2
error (2), the average CI coverage slightly increased, indicating moving in a more conservative

direction.
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Figure 88. Line graph depicting average CI coverage of the level-2 error standard deviation for
the shift in slope as a function of the two-way interaction effect between the variation in the
level-2 errors and the true level-1 error structure.

Level-1 error standard deviation. The average credible interval (CI) coverage values of
the level-1 error standard deviation were different across the two models (Model 1 and Model 2)
with substantial variability explained by the type of model (4* = .3) (Figure 89). Specifically, the
average CI coverage for Model 1 was M = 0.85, SD = 0.13, and the average CI coverage for

Model 2 was M =0.97, SD = 0.02. In addition, the CI coverage for Model 1 had more variability

than the CI coverage for Model 2.
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Figure 89. Box plots illustrating the distribution of the CI coverage for the level-1 error standard
deviation across Model 1 which did not model between case variation, and Model 2 which
models between case variation.

The average CI coverage values for the level-1 error standard deviation across the two
models were also examined within the three different types of true level-1 error structures
(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 90). The average
CI coverage values were different across the two models within the three true level-1 error
structures, and there were differences across the three true level-1 error structures, with
substantial variability explained by the different types of true level-1 error structures (n° = .3).

When the true level-1 error structure was homogeneous, both the CI coverage for Model 1 and

Model 2 tended to be above the nominal level, M = 0.96, SD = 0.01 for Model 1, M =0.99, SD <
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0.01 for Model 2. When the true level-1 error structure was one of the heterogeneous error

structures, the CI coverage for Model 1 tended to be under the nominal level (moderately hetero:

M =0.88, SD = 0.05; severely hetero: M =0.70, SD = 0.11) and the CI coverage for Model 2

tended to be either at the nominal level, .95 or slightly above (moderately hetero: M = 0.96, SD =

0.01; severely hetero: M = 0.95, SD = 0.01). The CI coverage for Model 1 generally had more

variability than the CI coverage for Model 2.
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Figure 90. Box plots illustrating the distribution for the CI coverage of the level-1 error standard

deivation across the two models within the three true level-1 error structures.

In addition, the smallest average CI coverage difference between the two models was

found when the true level-1 error structure was homogeneous (|M,-M;| = 0.027), and the biggest
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average CI coverage difference between the two models was found when the true level-1 error
structure was severely heterogeneous (|M>-M;| = 0.246).

In order to further explore the variability in the CI coverage of the level-1 error standard
deviation, GLM models were run. The model explained 96% of the variability after including 2-
way interactions, and indicated one main effect and one interaction effect had a medium or large
effect, including the series length per case (> = .06), and the 2-way interaction between the type
of model and the true level-1 error structure (n” = .19). These main and interaction effects were

illustrated in Figures 91 through 92.
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Figure 91. Box plots depicting the estimated CI coverage of the level-1 error standard deviation
as a function of the series length per case.
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As illustrated in Figure 91, as the series length per case increased from 10 to 20, the
average CI coverage decreased from M = 0.93, SD = .06 to M = 0.88, SD = .14. In addition,

more variability of the CI coverage shows when the series length per case was 20.
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Figure 92. Line graph depicting average CI coverage of the level-1 error standard deviation as a
function of the two-way interaction effect between the type of model and the true level-1 error
structure.

Figure 92 indicated that when the true level-1 error structure was homogeneous, the CI
coverage of the level-1 error standard deviation was above the nominal level for both Model 1
and Model 2. However, when the true level-1 error structure was one of the heterogeneous error

structures, CI coverage of the level-1 error standard deviation decreased to the nominal level, .95

for Model 2, while decreased below the nominal level (under covered) for Model 1. Therefore,
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the difference of the CI coverage in the level-1 error standard deviation between Model 1 and
Model 2 was smaller when the true level-1 error structure was homogeneous than one of the
heterogeneous error structures, and as the severity of the heterogeneous in the error structure
increased from moderately heterogeneous to severely heterogeneous, the difference of the CI
coverage in the level-1 error standard deviation between Model 1 and Model 2 greatly increased.
Autocorrelation. The average credible interval (CI) coverage values of the

autocorrelation were different across the two models (Model 1 and Model 2) (Figure 93). The
average CI coverage for Model 1 was under the nominal value, M = 0.81, SD = 0.17, and the

average CI coverage for Model 2 was close to the nominal level, M = 0.94, SD = 0.06.
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Figure 93. Box plots illustrating the distribution of the CI coverage for the autocorrelation across
Model 1 which did not model between case variation, and Model 2 which models between case
variation.
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In addition, the CI coverage of the autocorrelation for Model 1 had more variability than Model
2. The type of model explained substantial variability (n> = .2).

The average CI coverage values for the autocorrelation across the two models were also
examined within the three different types of true level-1 error structures (homogeneous,
moderately heterogeneous, and severely heterogeneous) (Figure 94). The average CI coverages
were different across the two models within the three true level-1 error structures, and there were
differences across the true level-1 error structures, with substantial variability explained by the
different types of true level-1 error structures (n* = .30). When the true level-1 error structure
was homogeneous, the average CI coverage was over the nominal value for both Model 1 and
Model 2 (Model 1: M=0.97, SD =0.01; Model 2: M =0.99, SD <0.01). However, when the
true level-1 error structure was one of the heterogeneous error structures, the average CI
coverage for Model 1 was severely under the nominal value (moderately hetero: M = 0.77, SD =
0.15; severely hetero: M =0.70, SD = 0.15), while the average CI coverage for Model 2 was
either close to the nominal level or slightly under the nominal level (moderately hetero: M =
0.94, SD = 0.05; severely hetero: M = 0.90, SD = 0.07). The smallest average CI coverage
difference between the two models was found when the true level-1 error structure was
homogeneous (|M>-M;| = 0.028), and the biggest average CI coverage difference between the
two models was found when the true level-1 error structure was severely heterogeneous (|M>-M;|
= 0.204). Generally, the CI coverage for Model 1 tended to have more variability than the CI

coverage for Model 2.
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Figure 94. Box plots illustrating the distribution of the CI coverage for the autocorrelation within
the three true level-1 error structures.

In order to further explore the variability in the CI coverage of the autocorrelation, GLM
models were run. The model explained 98% of variability after including 2-way interactions. The
GLM model found two interaction effects that had a medium effect, including the 2-way
interaction between the type of model and the true level-1 error structure (n* = .07), and the 2-
way interaction between the series length per case and the true level-1 error structure (n° = .07).
These interaction effects were illustrated in Figures 95 and 96.

As illustrated in Figure 95, when the true level-1 error structure was homogeneous, the CI
coverage was over the nominal level for both Model 1 and Model 2. However, when the true

level-1 error structure was one of the heterogeneous error structures, the CI coverage slightly
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decreased for Model 2, while decreased severely for Model 1. Therefore, the difference of the CI
coverage between Model 1 and Model 2 was smaller when the true level-1 error structure was
homogeneous than one of the heterogeneous error structures, and as the severity of the
heterogeneity in the level-1 error structure increased from moderately heterogeneous to severely
heterogeneous, the difference of the CI coverage in the level-1 error standard deviation between

Model 1 and Model 2 greatly increased.
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Figure 95. Line graph depicting average CI coverage of the autocorrelation as a function of the
two-way interaction effect between the type of model and the true level-1 error structure.
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Figure 96. Line graph depicting average CI coverage of the autocorrelation as a function of the
two-way interaction effect between the series length per case and the true level-1 error structure.
Similarly, the line graph in Figure 96 portrays that when the true level-1 error structure
was homogeneous, the CI coverage was similar and above the nominal level for both the series
length per case of 10 or 20 (series length per case 10: M = 0.99, SD = 0.02; series length per case
20: M =0.97, SD = 0.02). However, when the true level-1 error structure was one of the
heterogeneous error structures, CI coverage slightly decreased for the series length per case of 10
(moderately hetero: M = 0.93, SD = 0.07; severely hetero: M = 0.89, SD = 0.10), while
substantially decreased for the series length per case of 20 (moderately hetero: M = 0.78, SD =

0.15; severely hetero: M = 0.71, SD = 0.16). Therefore, the difference of the CI coverage
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between the series length per case of 10 and 20 was smaller when the true level-1 error structure
was homogeneous than one of the heterogeneous error structures, and as the severity of the

heterogeneity in the level-1 error structure increased from moderately heterogeneous to severely
heterogeneous, the difference of the CI coverage between the series length per case of 10 and 20

increased greatly.

Credible Interval Width

The distribution of credible interval width values of the level-2 error standard deviation
for intervention effects (shift in level and shift in slope), the level-1 error standard deviation, and
the autocorrelation are illustrated in Figures 97 through 115. The full information about the n*
values for the GLM models is provided in Appendix B.

Level-2 error standard deviation for phase (shift in level). The average credible
interval (CI) width values of the level-2 error standard deviation for phase were very similar
across the two models (Model 1 and Model 2) (Figure 97). The average CI width for Model 1
was M = 6.43, SD = 3.87, and the average CI width for Model 2 was M = 6.44, SD = 3.88. The
type of model explained little of the variability (n? <.00001).

The average CI width values of the level-2 error standard deviation for phase across the
two models were also examined within the three different types of true level-1 error structures

(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 98).
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Figure 97. Box plots illustrating the distribution for the CI width of the level-2 error standard
deviation for shift in level across Model 1 which did not model between case variation, and
Model 2 which models between case variation.

The average CI widths were very similar across the two models within the three true level-1 error
structures, and there were no or little differences across the true level-1 error structures, with
little of the variability explained by the different types of the true level-1 error structures (n* =
.0002). The smallest average CI width difference between the two models was found when the
true level-1 error structure was moderately heterogeneous (|M>-M;| = .032), and the biggest

average CI width difference between the two models was found when the true level-1 error

structure was severely heterogeneous (|M>-M;| = .054).
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Figure 98. Box plots illustrating the distribution for the CI width of the level-2 error standard
deviation for the shift in level across the two models within the three true level-1 error structures.
In order to further explore the variability in the CI width of the level-2 error standard
deviation for phase, a GLM model was run. The main effects only model explained 97% of the
variability. It was found that two of the design factors had a medium or large effect including the
number of cases (1” = .88) and the variation in the level-2 errors (4 = .08). These main effects

are illustrated in Figure 99 and 100.
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Figure 99. Box plots depicting the estimated CI width of the level-2 error standard deviation for
shift in level as a function of the number of cases.

As illustrated in Figure 99, as the number of cases increased from 4 to 8, the average CI
width decreased from M = 9.995, SD = 1.80 to M = 2.878, SD = 0.54. Similarly, as the variation
of error shifted from most of the variance at the level-1 error (.5) to most of the variance at the

level-2 error (2), the average CI width increased from M = 5.36, SD =3.08 to M =7.52, SD =

4.25 (Figure 100).
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Figure 100. Box plots depicting the estimated CI width of the level-2 error standard deviation for
shift in level as a function of the variation in the level-2 errors.

Level-2 error standard deviation for interaction (shift in slope). The average credible
interval (CI) width values of the level-2 error standard deviation for the interaction effect were
slightly different across the two models (Model 1 and Model 2) (Figure 101). The average CI
width for Model 1 was M = 1.62, SD = 1.11, and the average CI width for Model 2 was M =
2.16, SD = 1.46. The type of model explained a small amount of the variability (n* =.04). The
average CI width values of the level-2 error standard deviation for the interaction effect across
the two models were also examined within the three different types of true level-1 error

structures (homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 102).
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Figure 101. Box plots illustrating the distribution of the CI width for the level-2 error standard
deviation for shift in slope across Model 1 which did not model between case variation, and
Model 2 which models between case variation.

The average CI widths were slightly different across the two models within the three true level-1
error structures, and there were no or little differences across the true level-1 error structures,
with little of the variability explained by the different types of the true level-1 error structures (1
=.0002). The smallest average CI width difference between the two models was found when the

true level-1 error structure was severely heterogeneous (|M>-M;| = .524), and the biggest average

CI width difference between the two models was found when the true level-1 error structure was

homogeneous (|M,-M;| = .569).
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Figure 102. Box plots illustrating the distribution for the CI width of the level-2 error variance
for shift in slope across the two models within the three true level-1 error structures.

In order to further explore the variability in the CI width of the level-2 error standard
deviation for the interaction effect, GLM models were run. The model explained 99% of the
variability after including 2-way interactions. The GLM model found three main effects that had
a medium or large effect, including the number of cases (r|2 =.70), variation in the level-2 errors

(0> = .10), and the series length per case (> = .07). These main effects are illustrated in Figures

103 through 105.
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Figure 103. Box plots depicting the estimated CI width of the level-2 error standard deviation for
shift in slope as a function of the number of cases.

As illustrated in Figure 103, as the number of cases increased from 4 to 8, the average CI
width decreased from M =2.97, SD = 0.99 to M = 0.80, SD = 0.29. Similarly, as the variation in
the level-2 errors shifted from most of the variance at the level-1 error (.5) to most of the
variance at the level-2 error (2), the average CI width increased from M = 1.48, SD =1.06 to M =
2.30, SD = 1.43 (Figure 104). In addition, as the series length per case increased from 10 to 20,

the average CI width decreased from M =2.23, SD =1.48 to M = 1.55, SD = 1.05 (Figure 105).
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Figure 104. Box plots depicting the estimated CI width of the level-2 error standard deviation for
shift in slope as a function of the variation in the level-2 errors.
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Figure 105. Box plots depicting the estimated CI width of the level-2 error standard deviation for
shift in slope as a function of the series length per case.
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Level-1 error standard deviation. The average credible interval (CI) width values of the
level-1 error standard deviation were different across the two models (Model 1 and Model 2)
(Figure 106). The CI width for Model 1 was smaller than the CI width for Model 2. The average
CI width for Model 1 was M =0.47, SD = 0.17, and the average CI width for Model 2 was M =

0.81, SD = 0.22. The type of model explained a large amount of the variability (n> = .4).
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Figure 106. Box plots illustrating the distribution for the CI width of the level-1 error standard
deviation across Model 1 which did not model between case variation, and Model 2 which
models between case variation.

The average CI width values of the level-1 error standard deviation across the two models
were also examined within the three different types of true level-1 error structures

(homogeneous, moderately heterogeneous, and severely heterogeneous) (Figure 107). The
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average CI width were different across the two models within the three true level-1 error
structures, and there were little differences across the true level-1 error structures, with a small
amount of the variability explained by the different types of the true level-1 error structures (n* =
.02). The smallest average CI width difference between the two models was found when the true
level-1 error structure was homogeneous (|M>-M;| = .28), and the biggest average CI width
difference between the two models was found when the true level-1 error structure was severely

heterogeneous (|M>-M;| = .41). Generally, the CI width for Model 1 was smaller than the CI

width for Model 2.
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Figure 107. Box plots illustrating the distribution for the CI width of the level-1 error standard
deviation across the two models within the three true level-1 error structures.
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In order to further explore the variability in the CI width of the level-1 error standard

deviation, a GLM model was run. The main effects only model explained 96% of the variability.

It was found that three of the design factors had a medium or large effect, including the type of

model (n” = .44), the number of cases (> = .38), and the series length per case (> =.11). These

main effects are illustrated in Figures 108 through 110.
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Figure 108. Box plots depicting the estimated CI width of the level-1 error standard deviation as
a function of the type of model.
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Figure 109. Box plots depicting the estimated CI width of the level-1 error standard deviation as
a function of the series length per case.

As illustrated in Figure 108, the average CI coverage for Model 1 was smaller than the
average CI coverage for Model 2 (Model 1: M =0.47, SD = 0.17; Model 2: M= 0.81, SD = 0.22.
Figure 109 portrays that as the series length per case increased from 10 to 20, the average CI
width decreased from M = 0.80, SD = 0.24 to M = 0.48, SD = 0.17. Similarly, as the number of

cases increased from 4 to 8, the average CI width decreased from M =0.72, SD = 0.26 to M =

0.55, SD = 0.23 (Figure 110).
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Figure 110. Box plots depicting the estimated CI width of the level-1 error standard deviation as
a function of the number of cases.

Autocorrelation. The average credible interval (CI) width values of the autocorrelation
were different across the two models (Model 1 and Model 2) (Figure 111). The average CI width
for Model 1 was smaller than the average CI width for Model 2. The average CI width for Model
1 was M =0.74, SD = 0.27, and the average CI width for Model 2 was M = 1.10, SD = 0.24. The

type of model explained a large amount of the variability (n* =.34).
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Figure 111. Box plots illustrating the distribution for the CI widths of the autocorrelation across
Model 1 which did not model between case variation, and Model 2 which models between case
variation.

The average CI width values of the autocorrelation across the two models were also
examined within the three different types of true level-1 error structures (homogeneous,
moderately heterogeneous, and severely heterogeneous) (Figure 112). The average CI widths
were different across the two models within the three true level-1 error structures, and there were
no or little differences across the true level-1 error structures, with little of the variability
explained by the different types of the true level-1 error structures (n> = .0003). The smallest

average CI width difference between the two models was found when the true level-1 error

structure was homogeneous (|M,-M;| = .32), and the biggest average CI width difference
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between the two models was found when the true level-1 error structure was severely

heterogeneous (|M>-M;| = .39).
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Figure 112. Box plots illustrating the distribution for the CI width of the autocorrelation across
the two models within the three true level-1 error structures.

In order to further explore the variability in the CI width for the autocorrelation, a GLM
model was run. The main effects only model explained 99% of the variability. It was found that
three of the design factors had a large effect, including the series length per case (n* = .47), the

type of model (n* = .34), and the number of cases (n° = .17). These main effects are illustrated in

Figures 113 through 115.
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Figure 113. Box plots depicting the estimated CI width of the autocorrelation as a function of the
series length per case.

As illustrated in Figure 113, as the series length per case increased from 10 to 20, the
average CI width decreased from M = 1.14, SD = 0.24 to M = 0.71, SD = 0.22. Figure 114
portrays that the average CI coverage for Model 1 was smaller than the average CI coverage for
Model 2 (Model 1: M =0.74, SD = 0.27; Model 2: M =1.10, SD = 0.24). Similarly, as the
number of cases increased from 4 to 8, the average CI width decreased from M = 1.05, SD = 0.30

to M = 0.80, SD = 0.28 (Figure 115).

179

www.manharaa.com




1.4+

2t

T L
Model 1 Model 2

Cl width of the autocorrelation

Type of model

Figure 114. Box plots depicting the estimated CI width of the autocorrelation as a function of the
type of model.
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Figure 115. Box plots depicting the estimated CI width of the autocorrelation as a function of the
number of cases.
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Types of Specifications

The results of the fixed treatment effects and variance components were also looked by
three different types of specifications in the level-1 error structure: under-specified (i.e., Model 1
when the data were generated to be heterogeneous), correctly-specified (i.e., Model 1 when the
data were generated to be homogeneous, or Model 2 when the data were generated to be
heterogeneous), and over-specified (i.e., Model 2 when the data were generated to be

homogeneous).

Fixed Treatment Effects

Bias. The average bias values of the treatment effect for phase (shift in level) and the
average treatment effect for the interaction effect (shift in slope) by three different types of
specifications are illustrated in Figures 116 and 117.

Figure 116 portrays that the average bias values for the shift in level were very similar
and close to O for all three types of specifications, ranging from 0 to .003. The over-specified
models had the smallest variability among the three types of specifications.

Similarly, Figure 117 illustrated that the average bias values for the shift in slope were
slightly different, but close to 0 for all three types of specifications, ranging from .001 to .009.
The under-specified models had the smallest bias value and variability among the three types of

specifications.
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Figure 116. Box plots depicting the estimated bias of the treatment effect for phase across three
types of specifications.
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Figure 117. Box plots depicting the estimated bias of the treatment effect for interaction across
three types of specifications.
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RMSE. The average RMSE values of the treatment effect for phase (shift in level) and
the treatment effect for interaction (shift in slope) by three different types of specifications are

illustrated in Figures 118 and 119.
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Figure 118. Box plots depicting the estimated RMSE of the treatment effect for phase across
three types of specifications.

Figure 118 portrays that the average RMSE values for the shift in level were very similar

across all three types of specifications, ranging from .68 to .69.
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Similarly, Figure 119 illustrated that the average RMSE values for the shift in slope were

very similar across the three types of specifications, ranging from .22 to .23.
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Figure 119. Box plots depicting the estimated RMSE of the treatment effect for the interaction

effect across three types of specifications.

Cl coverage. The average CI coverage of the treatment effect for phase (shift in level)

and the interaction treatment effect (shift in slope) by three different types of specifications are

illustrated in Figures 120 and 121.
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Figure 120. Box plots depicting the estimated CI coverage of the treatment effect for phase
across three types of specifications.

Figure 120 portrays that the average CI coverage for the shift in level were similar and
tended to over cover across all three types of specifications, ranging from .983 to .985. The over-
specified type had more variability than other types of specifications. Similarly, Figure 121
illustrated that the average CI coverage values for the shift in slope were very similar and tended

to over cover across the three types of specifications, .985 for all three type of specification.
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Figure 121. Box plots depicting the estimated CI coverage of the interaction treatment effect
across three types of specifications.

Cl width. The average CI width of the treatment effect for phase (shift in level) and the
interaction treatment effect (shift in slope) by three different types of specifications are
illustrated in Figure 122 and 123. Figure 122 portrays that the average CI widths for the shift in
level were similar across the three types of specifications, ranging from 4.94 to 4.99. Similarly,
Figure 123 illustrated that the average CI widths for the shift in slope were similar across the

three types of specifications, ranging from 1.68 to 1.71.
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Figure 122. Box plots depicting the estimated CI width of the treatment effect for phase across
three types of specifications.
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Figure 123. Box plots depicting the estimated CI width of the interaction treatment effect across
three types of specifications.
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Variance Components
Bias. The average bias values of the level-2 error standard deviation for phase (shift in
level) and the level-2 error standard deviation for the interaction (shift in slope) by three different

types of specifications are illustrated in Figures 124 and 125.
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Figure 124. Box plots depicting the estimated bias of the level-2 error standard deviation for
phase across three types of specifications.

Figure 124 portrays that the average bias values of the level-2 error standard deviation for
the shift in level were very similar and tended to be positively biased for all three types of
specifications, ranging from .85 to .86. Similarly, Figure 125 illustrated that the average bias
values of the level-2 error standard deviation for the shift in slope were very similar and tended

to be positively biased for all three types of specifications, ranging from .30 to .31.
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Figure 125. Box plots depicting the estimated bias of the level-2 error standard deviation for the
interaction across three types of specifications.

The average bias values of the level-1 error variance by three different types of

specifications are illustrated in Figures 126 and 127.

Figure 126 portrays that the average bias values of the level-1 error standard deviation

were different and tended to be positively biased for all three types of specifications, ranging

from .034 to .056. The over-specified type had the smallest bias and variability, and the under-

specified type had the largest bias among the three types of specifications. For further

examination of this difference, the average bias values of the level-1 error standard deviation by
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also investigated in Figure 127. When under-specified, the average bias values of the level-1

error standard deviation increased as the degree of heterogeneity increased (moderately hetero:
M =.04; severely hetero: M =.07). When correctly-specified, and the true level-1 error structure
was homogeneous, it had the smallest average bias value of the level-1 error standard deviation

(homogeneous: M =.03; moderately hetero: M =.05; severely hetero: M =.05).
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Figure 126. Box plots depicting the estimated bias of the level-1 error standard deviation across
three types of specifications.
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Figure 127. Box plots depicting the estimated bias of the level-1 error standard deviation across
three types of specifications as a function of the true level-1 error structure.

The average bias values of the autocorrelation by three different types of specifications
are illustrated in Figures 128 and 129.

Figure 128 portrays that the average bias values of the autocorrelation were different and
tended to be negatively biased for the both under-specified and correctly-specified (M =-0.16, M
=-0.09, respectively) models, but close to 0 for the over-specified models (M = 0.01). The over-
specified models had the smallest variability, and the correctly-specified models had the largest
variability among the three types of specifications. For further examination of this difference, the

average bias values of the autocorrelation by the three different types of specifications as a
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function of the true level-1 error structure were plotted in Figure 129. When under-specified, the
average bias values of the autocorrelation were similar across the moderately and the severely
heterogeneous error structures (moderately hetero: M =-.16; severely hetero: M =-.17). When
correctly-specified, the average bias values of the autocorrelation were substantially smaller
when the true level-1 error structure was homogeneous than one of the heterogeneous error

structures (homogeneous: M =.02; moderately hetero: M =-.14; severely hetero: M =-.14).
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Figure 128. Box plots depicting the estimated bias of the autocorrelation across three types of
specifications.
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Figure 129. Box plots depicting the estimated bias of the autocorrelation across three types of
specifications as a function of the true level-1 error structure.

RMSE. The average RMSE values of the level-2 error standard deviation for phase
(shift in level) and the level-2 error standard deviation for the interaction (shift in slope) by three

different types of specifications are illustrated in Figures 130 and 131.
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Figure 130. Box plots depicting the estimated RMSE of the level-2 error standard deviation for
phase across three types of specifications.

Figure 130 portrays that the average RMSE values of the level-2 error standard deviation
for shift in level were very similar across all three types of specifications, ranging from 1.21 to
1.23. Similarly, Figure 131 illustrated that the average RMSE values of the level-2 error standard

deviation for shift in slope were very similar across the three types of specifications, ranging

from .41 to .42.
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Figure 131. Box plots depicting the estimated RMSE of the level-2 error standard deviation for
interaction across three types of specifications.

The average RMSE values of the level-1 error standard deviation by three different types
of specifications are illustrated in Figures 132 and 133.

Figure 132 portrays that the average RMSE values of the level-1 error standard deviation
were different, ranging from .14 to .27. The over-specified type had the smallest average RMSE
value and variability, and the under-specified type had the largest average RMSE value and
variability among the three types of specifications. For further examination of this difference, the
average RMSE values of the level-1 error standard deviation by the three different types of
specifications as a function of the true level-1 error structure were provided in Figure 133. In the

under-specified conditions, the average RMSE values of the level-1 error standard deviation
195

www.manaraa.com



increased as the degree of heterogeneity of the level-1 error structure increased (moderately
hetero: M =.20; severely hetero: M =.35). In the correctly-specified conditions, when the true
level-1 error structure was homogeneous, it had the smallest average RMSE values of the level-1
error standard deviation (homogeneous: M =.11; moderately hetero: M =.18; severely hetero: M

=22).
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Figure 132. Box plots depicting the estimated RMSE of the level-1 error standard deviation
across three types of specifications.
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Figure 133. Box plots depicting the estimated RMSE of the level-1 error standard deviation
across three types of specifications as a function of the true level-1 error structure.

The average RMSE values of the autocorrelation by three different types of specifications
are illustrated in Figures 134 and 135.

Figure 134 portrays that the average RMSE values of the autocorrelation were different,
ranging from .18 to .30. The over-specified type had the smallest average RMSE value and
variability, and the under-specified type had the largest variability among the three types of
specifications.

For further examination of this difference, the average RMSE values of the

autocorrelation by the three different types of specifications as a function of the true level-1 error
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RMSE values of the autocorrelation increased as the degree of heterogeneity in the level-1 error

structure increased (moderately hetero: M =.27; severely hetero: M =.33). When the models were

correctly-specified, and the true level-1 error structure was homogeneous, it had the smallest

average RMSE value of the autocorrelation (homogeneous: M =.17; moderately hetero: M =.26;

severely hetero: M =.31).
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Figure 134. Box plots depicting the estimated RMSE of the autocorrelation across three types of
specifications.
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Figure 135. Box plots depicting the estimated RMSE of the autocorrelation across three types of
specifications as a function of the true level-1 error structure.

Cl coverage. The average CI coverage of the level-2 error standard deviation for phase
(shift in level) and the level-2 error standard deviation for the interaction (shift in slope) by three
different types of specifications are illustrated in Figures 136 through 138.

Figure 136 portrays that the average CI coverages of the level-2 error standard deviation
for the shift in level were similar and tended to be over the nominal level across all three types of
specifications, ranging from .967 to .974. The over-specified type had more conservative CI

coverage than the other types of specifications.
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Similarly, Figure 137 illustrated that the average CI coverage values of the level-2 error
standard deviation for the shift in slope were slightly different and tended to exceed the nominal
level across all three types of specifications, ranging from .970 to .982. The over-specified type

had more conservative CI coverage than other types of specifications.
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Figure 136. Box plots depicting the estimated CI coverage of the level-2 error standard deviation
for phase across three types of specifications.
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Figure 137. Box plots depicting the estimated CI coverage of the level-2 error standard deviation
for the interaction across three types of specifications.

For further examination of this difference, the average CI coverage values of the level-2
error standard deviation for the shift in slope by the three different types of specifications as a
function of the true level-1 error structure were presented in Figure 138. As illustrated in Figure
138, there were no or little differences among the true level-1 error structures within the different
types of the specifications.

The average CI coverage values of the level-1 error standard deviation by three different

types of specifications are illustrated in Figures 139 and 140.
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Figure 138. Box plots depicting the estimated CI coverage of the level-2 error standard deviation
for the interaction across three types of specifications as a function of the true level-1 error
structure.

Figure 139 portrays that the average CI coverage values of the level-1 error standard
deviation were different, and tended to be under covered for the under-specified (M = .79) type,
close to the nominal level for the correctly-specified (M = .96) type, and over covered for the
over-specified (M = .99) type. The under-specified type had substantially larger variability than
the other types of specifications. For further examination of this difference, the average CI
coverage values of the level-1 error standard deviation by the three different types of

specifications as a function of the true level-1 error structure were also shown in Figure 140.

When the models were under-specified, the average CI coverage values of the level-1 error

202

www.manaraa.com



standard deviation tended to be under the nominal level for both the heterogeneous error
structures, and as the degree of heterogeneity increased, the average CI coverage values
substantially decreased (moderately hetero: M =.88; severely hetero: M =.70). When the models
were correctly-specified, the average CI coverage values of the level-1 error standard deviation
tended to be close to the nominal level, .95, regardless of the true level-1 error structure

(homogeneous: M =.96; moderately hetero: M =.96; severely hetero: M =.95).
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Figure 139. Box plots depicting the estimated CI coverage of the level-1 error standard deviation
across three types of specifications.
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Figure 140. Box plots depicting the estimated CI coverage of the level-1 error standard deviation
across three types of specifications as a function of the true level-1 error structure.

The average CI coverage values of the autocorrelation by three different types of
specifications are illustrated in Figures 141 and 142.

Figure 141 portrays that the average CI coverage values of the autocorrelation were
different, and tended to be under the nominal level for the under-specified (M = .74) type, close
to the nominal level for the correctly-specified (M = .94) type, and over the nominal level for the
over-specified (M = .99) type. The under-specified type had substantially larger variability than

the other types of specifications.
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Figure 141. Box plots depicting the estimated CI coverage of the autocorrelation across three
types of specifications.

For further examination of this difference, the average CI coverage values of the
autocorrelation by the three different types of specifications as a function of the true level-1 error
structure were also displayed in Figure 142. When models were under-specified, the average CI
coverage values of the autocorrelation tended to be under the nominal level for both
heterogeneous error structures, and as the degree of heterogeneity in the level-1 error structure
increased, the average CI coverage value decreased (moderately hetero: M =.77; severely hetero:
M =.70). When the models were correctly-specified, the average CI coverage values of the

autocorrelation decreased as the degree of heterogeneity in the level-1 error structure increased
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(homogeneous: M =.97; moderately hetero: M =.94; severely hetero: M =.90). When the true
level-1 error structure was moderately heterogeneous, the average CI coverage value of the

autocorrelation was close to the nominal level, .95.

under-specified correctly-specified over-specified
1.0 5 —
E 0.9 4
=
2
2
°o 084
2 A4
Q
=
‘s
o 0.7 ~O
[=2]
m
@
2
(& ]
o 0.6
0.5 4 I
1 1 ] ] 1 I I ] I
% %, S, % % %, %, % )
% oéf LP % 0&;’ L % q’f Lo
£ % % ) % % ) % %
2 8 4, 2 S 4 2 S %
o %, % % % % % % %
& f% o 5 «{% ] e @,o ©
True level-1 error structure

Figure 142. Box plots depicting the estimated CI coverage of the autocorrelation across three
types of specifications as a function of the true level-1 error structure.

Cl width. The average CI width values of the level-2 error standard deviation for phase
(shift in level) and the level-2 error standard deviation for the interaction (shift in slope) by three

different types of specifications are illustrated in Figures 143 through 145.
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Figure 143 portrays that the average CI width values of the level-2 error standard
deviation for the shift in level were similar across the three types of specifications, ranging from
6.43 to 6.48. In contrast, Figure 144 illustrates that the average CI width values of the level-2
error standard deviation for the shift in slope were slightly different across the three types of
specifications, ranging from 1.61 to 2.20. The Over-specified type had the widest average CI

width among the three types of specifications.
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Figure 143. Box plots depicting the estimated CI width of the level-2 error standard deviation for
phase across three types of specifications.
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Figure 144. Box plots depicting the estimated CI width of the level-2 error standard deviation for
interaction across the three types of specifications.

For further examination of this difference, the average CI width values of the level-2
error standard deviation for the shift in slope by the three different types of specifications as a
function of the true level-1 error structure were also graphed in Figure 145. When models were
under-specified, there were little differences across the true level-1 error structures (moderately
hetero: M =1.61; severely hetero: M =1.62). When the models were correctly-specified, the
average CI width value was smaller when the true level-1 error structure was homogeneous than

one of the heterogeneous error structures (homogeneous: M =1.63; moderately hetero: M =2.14;

severely hetero: M =2.15).
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Figure 145. Box plots depicting the estimated CI coverage of the autocorrelation across three
types of specifications as a function of the true level-1 error structure.

The average CI width values of the level-1 error standard deviation by three different
types of specifications are illustrated in Figures 146 and 147.

Figure 146 portrays that the average CI width values of the level-1 error standard
deviation were different, ranging from .47 to .74. The under-specified type had a smaller average
CI width value than the other types of specifications.

For further examination of this difference, the average CI width values of the level-1
error standard deviation by the three different types of specifications as a function of the true

level-1 error structure were displayed in Figure 147. When models were under-specified, the
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average CI width values of the level-1 error standard deviation were similar across the true level-
1 error structures (moderately hetero: M =.46; severely hetero: M =.48). When the models were
correctly-specified, and the true level-1 error structure was homogeneous, it had the smallest
average CI width value of the level-1 error standard deviation (homogeneous: M =.46;

moderately hetero: M =.80; severely hetero: M =.89).
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Figure 146. Box plots depicting the estimated CI width of the level-1 error standard deviation
across three types of specifications.
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Figure 147. Box plots depicting the estimated CI width of the level-1 error standard deviation
across three types of specifications as a function of the true level-1 error structure.

The average CI width values of the autocorrelation by three different types of
specifications are illustrated in Figures 148 and 149.

Figure 148 portrays that the average CI width values of the autocorrelation were
different, ranging from .73 to 1.09. The under-specified type had a smaller average CI width
value than the other types of specifications. For further examination of this difference, the
average CI width values of the autocorrelation by the three different types of specifications as a

function of the true level-1 error structure were displayed in Figure 149. When the models were
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under-specified, the average CI width values of the autocorrelation were similar across the true

level-1 error structures (moderately hetero: M =.73; severely hetero: M =.73). When the models

were correctly-specified, and the true level-1 error structure was homogeneous, it had the

smallest average CI width value of the autocorrelation (homogeneous: M =.77; moderately

hetero: M =1.10; severely hetero: M =1.12).
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Figure 148. Box plots depicting the estimated CI width of the autocorrelation across three types
of specifications.
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Figure 149. Box plots depicting the estimated CI width of the autocorrelation across three types
of specifications as a function of the true level-1 error structure.
Summary of the Study

The main study with 48 conditions found that different methods of modeling level-1 error
structure had little to no impact on the estimates of the fixed treatment effects, but substantial
impact on the estimates of the variance components, especially the level-1 error standard

deviation and the autocorrelation parameters. Similarly, whether the level-1 error structure was
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under-specified, over-specified, or correctly-specified had little to no impact on the estimates of
the fixed treatment effects, but a substantial impact on the estimates of the variance components,
especially the level-1 error standard deviation and the autocorrelation. In addition, it was found
that the different type of true level-1 error structure had substantial impact on the estimates of the
level-1 error standard deviation and the autocorrelation. The summary tables of these findings
are provided in Tables 2 through 5.

The fixed treatment effects were not biased for both Model 1 and 2. The average RMSE
values for the fixed treatment effects were similar across the models. The interval coverage for
the fixed treatment effects tended to be over the nominal level for both models. The interval
width values were similar across the two models. In addition, under- or over-specification of the
level-1 error structure had little to no impact on the estimates of the fixed treatment effects.

For the variance components, all level-2 error standard deviation estimates were
positively biased for both Model 1 and 2. The average RMSE values for the level-2 error
standard deviation estimates were similar across the two models. The interval coverage for the
level-2 error standard deviations tended to be over the nominal level for both models. The
interval width values were similar across the two models. In addition, different types of
specifications in the level-1 error structure had little to no impact on the estimates of the level-2
error standard deviations.

Unlike the level-2 error standard deviations that had similar results across Model 1 and 2,
the level-1 error standard deviation and autocorrelation show some differences in terms of the
results across Model 1 and 2. The level-1 error standard deviation was similar and positively
biased for both models, but the average RMSE values were different across the two models. The

average RMSE value was smaller and had less variability when estimated by Model 2 than
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Model 1. In addition, the interval coverage had a substantial difference across the two models. It
was under the nominal level when estimated by Model 1, but close to the nominal level when
estimated by Model 2. The interval width was smaller when estimated by Model 1 than Model 2.
Similarly, the autocorrelation was similar but negatively biased for both models, and the average
RMSE value was similar across the two models. The interval coverage was substantially
different across the two models. It was under the nominal level when estimated by Model 1 but
close to the nominal level when estimated by Model 2. The interval width was smaller when
estimated by Model 1 than Model 2.

In addition, different types of specifications in the level-1 error structure had a substantial
impact on the estimates of the variance components, especially the level-1 error standard
deviation and the autocorrelation. For the average bias and RMSE values of the level-1 error
standard deviation and the autocorrelation, over-specified models had the smallest bias and
RMSE values, and for the CI coverage of the level-1 error standard deviation and the
autocorrelation, the correctly-specified models led to coverage that was the closest to the
nominal level.

Moreover, different types of the true level-1 error structures had a substantial impact on
the estimates of the level-1 error standard deviation and the autocorrelation. As the degree of
heterogeneity in the level-1 error structures increased, estimates of the level-1 error standard
deviation and the autocorrelation tended to be more accurate when estimated by Model 2 than

Model 1.
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Table 2

Summary of the results for the fixed treatment effects

Parameter estimate Bias RMSE CI coverage CI width

Shift in level Close to 0 for both Similar across the two Over the nominal level Similar across the two
Model 1 (M=.002) and models (M=.68 for both for both models (M=.98 models (Model
Model 2 (M<.001) models) for both models) 1:M=4.96; Model 2:

M=4.95)

The moderately No or little difference No or little difference No or little difference
heterogeneous error across the true level-1 across the true level-1 across the true level-1
structure had the error structures (N2 = error structures (12 = error structures (n2 =
smallest bias but largest .001) .008) .0002)
variability
One medium effect (n2 Three of the design One large effect (2 = Two of the design
=.10) for the 4-way factors had a medium or .88) for the number of factors had a medium or
interaction among large effect, including case large effect including
number of cases, series the number of cases (12 the number of cases (12
length per case, = .48), variation in the = .84) and the variation
variation in the level-2 level-2 errors (n2 = .38), in the level-2 errors (2
errors, and true level-1 and the series length per =.12)
error structure case (N2 =.11)

Shift in slope Close to 0 for both Similar across the two Over the nominal level Similar across the two

Model 1 (M=.004) and
Model 2 (M=.003)

The severely
heterogeneous error
structure had the
smallest bias, and the
homogeneous error
structure had the largest
bias

models (Model 1:
M=.23; Model 2:
M=.22)

No or little difference
across the true level-1
error structures (N2 =
.00143)
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for the both Model 1 and
Model 2. M=.99 for
both models

No or little difference
across the true level-1
error structures (12 =
.0005)
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models (M=1.68 for
both models)

No or little difference
across the true level-1
error structures (N2 =
.0005)



Table 2 (continued)
Summary of the results for the fixed treatment effects

had a medium effect,
including the 3-way
interaction among the
number of cases, the
series length per case,
and the true level-1 error
structure (2 = .10), the
3-way interaction
among the number of
cases, the series length
per case, and the
variation in the level-2
errors (N2 =.09), and
the 3-way interaction
among the series length
per case, the true level-1
error structure, and the
variation in the level-2
errors (12 = .08)

factors had a large
effect, including the
series length per case
(n2 = .47), the number
of cases (N2 =.28), and
the variation in the
level-2 errors (N2 = .22)

e Three interaction effects e Three of the design e Two of the design

factors had a medium or
large effect, including
the number of cases (12
=.83) and the series
length per case (2 =
.08)

e Three of the design

factors had a medium or
large effect including
the number of cases (12
=.65), the series length
per case (N2 =.19), and
the variation in the
level-2 errors (N2 = .10)
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Table 3

Summary of the results for the variance components

Parameter estimate

Bias

RMSE

CI coverage

CI width

Level-2 error °
standard deviation
for shift in level

Similar across the two
models and both
positively biased
(Model 1: M=.86;
Model 2:M=.85)

No or little difference
across the true level-1
error structures (N2 =
.0004)

One of the design
factors, the number of
cases, had a large effect
n2 =.96)

Similar across the two
models (Model 1:
M=1.23; Model
2:M=1.21)

No or little difference
across the true level-1
error structures (N2 =
.0003)

Two of the design
factors had a medium
or large effect,
including the number of
cases (n2 =.89), and
the variation in the
level-2 errors (n2 = .08)
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Over the nominal level
across the two models
(Model 1: M=0.97;
Model 2:M=0.97)

Little difference across
the true level-1 error
structures (N2 = .02)

Two main effects and
one interaction effect
had a medium or large
effect, including the
variation in the level-2
errors (N2 =.29), the
type of model (n2 =
.07), the 3-way
interaction among the
series length per case,
the number of cases and
the true level-1 error
structure (2 = .11)
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Similar across the two
models (Model 1:
M=6.43; Model
2:M=6.44)

No or little difference
across the true level-1
error structures (N2 =
.0002)

Two of the design
factors had a medium
or large effect including
the number of cases (12
= .88) and the variation
in the level-2 errors (12
=.08)



Table 3 (continued)

Summary of the results for the variance components

Level-2 error
standard deviation
for shift in slope

Similar across the two
models and both
positively biased
(Model 1: M=.31;
Model 2:M=.30)

No or little difference
across the true level-1
error structures (N2 =
.0004)

One medium effect (n2
=.07) for the 2-way
interaction between the
number of cases and the
series length per case

Similar across the two
models (Model 1:
M=.42; Model
2:M=.41)

No or little difference
across the true level-1
error structures (N2 =
.0002)

Two of the design
factors had a medium
or large effect,
including the number of
cases (N2 =.73) and the
series length per case

M2 =.13)
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Over nominal level
across the two models
(Model 1: M=0.97;
Model 2: M=0.98)

Some difference across
the true level-1 error
structures (N2 = .05)

Two of the design
factors and one
interaction effect that
had a medium or large
effect, including the
series length per case
(N2 =.65), the type of
model (n2 =.06), and
the 2-way interaction

between the variation in

the level-2 errors and
the true level-1 error
structure (n2 = .07)
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Model 1 had a smaller
CI width than Model 2.
(Model 1: M=1.62;
Model 2: M=2.16).

No or little difference
across the true level-1
error structures (N2 =
.0002)

Three main effects that
had a medium or large
effect, including the
number of cases (12 =
.70), variation in the
level-2 errors (n2 =
.10), and the series
length per case (n2 =
.07)



Table 3 (continued)

Summary of the results for the variance components

Level-1 error
standard deviation

Similar across the two
models and both
positively biased
(Model 1: M=.05;
Model 2:M=.04)

Substantial differences
across the true level-1
error structures (N2 =
.22). For the
homogeneous or
moderately
heterogeneous error
structure, more biased
when estimated by

Model 2 than Model 1.

For the severely
heterogeneous error
structure, more biased
when estimated by

Model 1 than Model 2.

Model 2 had a smaller
RMSE value than
Model 1 (Model 1:
M=.22; Model
2:M=.18)

Substantial differences
across the true level-1
error structures (N2 =
.62). For the
homogeneous error
structure, larger when
estimated by Model 2
than Model 1. For the
heterogeneous error
structures, smaller
when estimated by

Model 2 than Model 1.
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Substantial difference
across the two models
(m2 =.3). Under
nominal level and more
variability for Model 1.
Over nominal level for
Model 2 (Model 1:
M=.85; Model 2:
M=.97)

Substantial differences
across the true level-1
error structures (12 =
.3). For the
homogeneous error
structure, over the
nominal level for the
both models. For the
heterogeneous
structures, under the
nominal level for
Model 1 and either at or
slightly over the
nominal level for
Model 2.
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Model 1 had a smaller
CI width than Model 2
(Model 1: M=0.47,
Model 2:M=0.81)

Little difference across
the true level-1 error
structures (n2 = .02).
Generally, the CI width
for Model 1 was
smaller than the CI
width for Model 2.



Table 3 (continued)

Summary of the results for the variance components

Three main effects and
one 2-way interaction
had a medium or large
effect, including the
series length per case
(m2 = .25), the variation
in the level-2 errors (12
=.19), the number of
cases (N2 =.11), and
the 2-way interaction
between the type of
model and the true
level-1 error structure

M2 =.10)

One main effect and
one interaction effect
had a medium or large
effect, including the
series length per case
(m2 =.11) and the 2-
way interaction
between the type of
model and the true
level-1 error structure

M2 =.16)

One main effect and
one interaction effect
had a medium or large
effect, including the
series length per case
(n2 =.06), the 2-way
interaction between the
type of model and the
true level-1 error
structure (N2 =.19)

Three of the design
factors had a medium
or large effect,
including the type of
model (02 = .44), the
number of cases (12 =
.38), and the series
length per case (2 =
A1)

Autocorrelation

Similar across the two
models and both
negatively biased
(Model 1: M=-.10;
Model 2:M=-.09)

Similar across the two
models (Model 1:
M=.26; Model 2:M=-
25)
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Substantial difference
across the two models
(n2 =.2). Under
nominal level and more
variability for Model 1.
Close to the nominal
level for Model 2
(Model 1: M=.81;
Model 2: M=.94).
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Model 1 had a smaller
CI width than Model 2
(Model 1: M=0.74;
Model 2:M=1.10)



Table 3 (continued)

Summary of the results for the variance components

Substantial differences
across the true level-1
error structures (N2 =
.22). More biased for
the heterogeneous error
structures than the
homogeneous error
structure, regardless of
the type of model.

One large effect for the
true level-1 error
structure (n2 = .88)

Substantial differences
across the true level-1
error structures (n2 =
.62). For the
homogeneous error
structure, larger when
estimated by Model 2
than Model 1. For the
heterogeneous error
structures, smaller when
estimated by Model 2
than Model 1. Larger for
the heterogeneous error
structures than the
homogeneous error
structure, regardless of
the type of model

Two of the design
factors had a medium or
large effect, including
the true level-1 error
structure (n2 = .83) and
the series length per case
(m2 =.06).

Substantial differences
across the true level-1
error structures (n2 = .3).
Over nominal level for
the homogeneous error
structure. For the
heterogeneous error
structures, Model 1 was
severely under the
nominal level, while
Model 2 was either close
to the nominal level or
slightly under the
nominal level.

Two interaction effects
had a medium effect,
including the 2-way
interaction between the
type of model and the
true level-1 error
structure (n2 =.07), and
the 2-way interaction
between the series length
per case and the true
level-1 error structure
m2=.07)

No or little difference
across the true level-
1 error structures (12
=.0003). Generally,
the CI width for
Model 1 was smaller
than the CI width for
Model 2.

Three of the design
factors had a large
effect, including the
series length per case
(n2 = .47), the type of
model (n2 =.34), and
the number of cases

m2=.17)
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Table 4

Summary of the results for the fixed treatment effects by over-, under-, and correct-specification of the level-1 error structure

Parameter estimate

Bias

RMSE

CI coverage

CI width

Shift in level .

Close to 0 for all three
types of specifications,
ranging from 0 to .003

Similar across the types
of specifications,
ranging from .68 to .69

Over nominal level
across all three types of
specifications, ranging
from .983 to .985

Similar across the types
of specifications,
ranging from 4.94 to
4.99

Shift in slope .

Close to 0 for all three
types of specifications,
ranging from .001 to
.009. The under-
specified type had the
smallest bias value and
variability among the
three types of
specifications

Similar across all three
types of specifications,
ranging from .22 to .23

Over nominal level
across all three types of
specifications, .985 for
all three types of
specifications

Similar across all three
types of specifications,
ranging from 1.68 to
1.71
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Table 5

Summary of the results for the variance components by over-, under-, and correct-specification of the level-1 error structure

Parameter estimate

Bias

RMSE

CI coverage

CI width

Level-2 error
standard deviation
for shift in level

Similar and positively
biased for all three
types of specifications,

ranging from .85 to .86.

Similar across all three
types of specifications,
ranging from 1.21 to
1.23

Similar and over
nominal level across all
three types of
specifications, ranging
from .967 to 974

More conservative CI
coverage for the over-
specified type than
other types of
specifications

Similar across the three
types of specifications,
ranging from 6.43 to
6.48

Level-2 error
standard deviation
for shift in slope

Similar and positively
biased for all three
types of specifications,

ranging from .30 to .31.

Similar across the three
types of specifications,
ranging from .41 to .42
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Slightly different and
over nominal level
across all three types of
specifications, ranging
from .970 to .982

More conservative CI
coverage for the over-
specified type than
other types of
specifications
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Slightly different across
the three types of
specifications, ranging
from 1.61 to 2.20

The widest average CI
width for the over-
specified type among
the three types of
specifications.



Table 5 (continued)

Summary of the results for the variance components by over-, under-, and correct-specification of the level-1 error structure

e For the correctly-
specified models,
the homogeneous
error structure had
smaller CI width
than the
heterogeneous error
structures

Level-1 error
standard deviation

Different and positively
biased for all three
types of specifications,
ranging from .034 to
.056

The over-specified type
had the smallest bias
and variability, and the
under-specified type
had the largest bias
value

Different across all
three types of
specifications, ranging
from .14 to .27

The over-specified type
had the smallest
average RMSE value
and variability, and the
under-specified type
had the largest average
RMSE value and
variability
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Different, and under the
nominal level for the
under-specified models
(M =.79), close to the
nominal level for the
correctly-specified
models (M =.96), and
over the nominal level
for the over-specified
models (M =.99)

The under-specified
type had substantially
larger variability than
the other types of
specifications
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Different for all three
types of specifications,
ranging from .47 to .74

The under-specified
type had a smaller
average CI width value
than the other types of
specifications



Table 5 (continued)

Summary of the results for the variance components by specifications of the level-1 error structure

For the under-specified
models, the average
bias increased as the
degree of heterogeneity
increased. For the
correctly-specified, the
homogeneous error
structure had the
smallest average bias

For the under-specified
models, the average
RMSE increased as the
degree of heterogeneity
increased. For the
correctly-specified, the
homogeneous error
structure had the
smallest average RMSE

For the under-specified
models, the average CI
coverage tended to be
under the nominal level
for both heterogeneous
error structures, and as
the degree of
heterogeneity
increased, the average
CI coverage value
substantially decreased.
For the correctly-
specified models, the
average CI coverage
tended to be close to the
nominal level,
regardless of the true
level-1 error structure

For the Under-specified
models, the average CI
width was similar
across the true level-1
error structures. For the
correctly-specified
models, the
homogeneous error
structure had the
smallest average CI
width

Autocorrelation

Different and
negatively biased for
the both under-
specified and correctly-
specified models (M = -
0.16, M =-0.09,
respectively), but close
to 0 for the over-
specified models (M =
0.01)

Different across all
three types of
specifications, ranging
from .18 to .30

226

Different, and under the
nominal level for the
under-specified models
(M =.74), close to the
nominal level for the
correctly-specified (M
=.94), and over the
nominal level for the
over-specified models
M =.99)
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Different across all
three types of
specifications, ranging
from .73 to 1.09



Table 5 (continued)
Summary of the results for the variance components by specifications of the level-1 error structure

The over-specified type
had the smallest bias
and variability

For the under-specified
models, the average
bias values were similar
across the
heterogeneous error
structures. For the

The over-specified type
had the smallest
average RMSE values
and variability, and the
under-specified type
had the largest
variability

For the under-specified
models, the average
RMSE values increased
as the degree of
heterogeneity
increased. For the

The under-specified
type had substantially
larger variability than
the other types of
specifications

For the under-specified
models, the average CI
coverage tended to be
under the nominal level
for the heterogeneous
error structures, and as

The under-specified
type had smaller
average CI width than
the other types of
specifications.

For the under-specified
models, the average CI
width was similar
across the true level-1
error structures. For the
correctly-specified

correctly-specified correctly-specified the degree of models, the
models, the average models, the heterogeneity homogeneous error
bias value was homogeneous error increased, the average structure had the
substantially smaller for structure had the CI coverage decreased. smallest average CI
the homogeneous error smallest average RMSE For the correctly- width
structure than the value specified models, the
heterogeneous error average CI coverage
structures decreased as the degree

of heterogeneity

increased
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Based on these findings, it seemed worthwhile to explore if these results can be
generalized to other important conditions that had not been covered in the main study, such as
different degrees of the average level of autocorrelation, and the way of generating heterogeneity
in the level-1 error structure. Therefore, two small follow up studies with fewer conditions,
Study 2 and Study 3, were conducted for further exploration. More detailed information and

results of Study 2 and Study 3 are provided in following sections.

Follow-Up Study: Study 2

In terms of the average autocorrelation, the main study had one level of autocorrelation
(0.2), and this is the typical average autocorrelation value found in behavior studies (Shadish &
Sullivan, 2011). However, other simulation work done in this area used the levels of
autocorrelation 0.1, 0.2, 0.3 and 0.4 (Ferron et al., 2009; Ferron, Farmer, & Owens, 2010) which
covered the possible autocorrelation values commonly found in behavior research (Huitema,
1985; Matyas & Greenwood, 1996). Thus, it was decided to examine one more level of
autocorrelation, .04 in this study. More specifically, average level of autocorrelation .4 with
standard deviation of .1 was selected to be examined along with selected conditions used in the
main study. The autocorrelation .4 with standard deviation of .1 was selected because it creates a
distribution that 99% of the autocorrelation values fall between .1 and .7 that covers the
autocorrelation values typically found in behavior research (Huitema, 1985; Matyas &
Greenwood, 1996; Shadish & Sullivan, 2011). Thus, in Study 2, there were 6 conditions
simulated using the two factors. These factors were (1) the true level-1 error structure
(homogeneous, moderately heterogeneous, and severely heterogeneous); (2) the analysis

methods modeling level-1 error structure (not modeling between case variation (Model 1), and
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modeling between case variation (Model 2). Autocorrelation was fixed as .4 and all other factors
used in the main study were also fixed; (1) the number of cases, 4 ; (2) the series length per case,
10; (3) the variation in the level-2 errors, most of the variance at level-1 (.5, .05). This yielded a

2x3 factorial design.

Results of the study

The outcomes of all of the simulated conditions for the fixed treatment effects and
variance components are provided in Tables 6 and 7.

The results of the fixed treatment effects and the variance components from the main
study that used 0.2 as the average autocorrelation value were very similar to the results of the
fixed treatment effects and variance components from Study 2 that used 0.4 as the average
autocorrelation value. The different modeling methods in level-1 error structure had little to no
impact on the estimates of the fixed treatment effects, but substantial impacts on the estimates of
the variance components, especially the level-1 error standard deviation and the autocorrelation
parameters.

The fixed treatment effects were not biased for both Model 1 where between case
variation was not modeled and Model 2 where between case variation was modeled. The average
RMSE values for the fixed treatment effects were similar across the models. The interval
coverage for the fixed treatment effects tended to be over the nominal level for both models. The
interval width values were similar across the two models. In addition, different types of
specifications (i.e., over-, under-, and correct-specification) in the level-1 error structure had

little to no impact on the estimates of the fixed treatment effects.
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Table 6

The results of the fixed treatment effects for Study 2

Homogeneous Moderately hetero Severely Hetero |
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
Bias
Intercept -0.011 -0.010 0.015 0.014 -0.001 -0.003
Phase -0.035 -0.040 -0.009 -0.008 0.036 0.036
Time 0.004 0.004 0.007 0.007 -0.004 -0.003
Interaction -0.009 -0.008 -0.006 -0.006 0.011 0.011
RMSE
Intercept 0.608 0.607 0.512 0.513 0.541 0.524
Phase 0.736 0.742 0.727 0.725 0.722 0.699
Time 0.211 0.212 0.197 0.197 0.198 0.191
Interaction 0.325 0.326 0.282 0.281 0.296 0.284
CI coverage
Intercept 0.995 0.996 0.999 0.999 0.999 0.999
Phase 0.998 0.997 0.999 1.000 1.000 1.000
Time 0.996 0.996 0.998 0.999 0.998 0.999
Interaction 0.997 0.997 1.000 1.000 0.999 0.999
CI width

Intercept 5.165 5.128 4.473 4.483 4.617 4.574
Phase 6.617 6.650 6.323 6.345 6.499 6.379
Time 1.669 1.657 1.552 1.549 1.595 1.550
Interaction 2.862 2.845 2.598 2.601 2.654 2.599

For the variance components, the different modeling methods in level-1 error structure

had little to no impact on the estimates of the level-2 error standard deviations for phase (the

shift in level) and the interaction (the shift in slope). Unlike the level-2 error standard deviations,

the level-1 error standard deviation and autocorrelation show some differences in terms of the

results across Model 1 and 2. The average bias and RMSE values were similar across the models,

but the average CI coverage values were substantially different across the two models. The

coverage was substantially under the nominal level when estimated by Model 1, but close to the

nominal level when estimated by Model 2. The interval width was smaller when estimated by

Model 1 than Model 2. In addition, different types of specifications in the level-1 error structure

had a substantial impact on the estimates of the level-1 error standard deviation and the
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autocorrelation. For the average bias and RMSE values of the level-1 error standard deviation

and the autocorrelation, the over-specified models had the smallest bias and RMSE values, and

for the CI coverage of the level-1 error standard deviation and the autocorrelation, the correctly-

specified models had coverages closest to the nominal level.

Table 7

The results of the variance components for Study 2

Homogeneous Moderately hetero Severely Hetero
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
Bias
Intercept 1.101 1.091 0.851 0.844 0.900 0.881
Level-2
error Phase 1.542 1.550 1.409 1.408 1.468 1.424
standard Time 0.325 0.324 0.288 0.285 0.300 0.287
deviation Interaction 0.716 0.716 0.626 0.624 0.643 0.623
Level-1 error standard 0.006 0.016 0.038 0.059 0.075 0.067
deviation
Autocorrelation -0.058 0.116 -0.376 -0.356 -0.365 -0.331
RMSE
Intercept 1.363 1.349 1.090 1.067 1.160 1.126
Level-2
error Phase 1.806 1.804 1.650 1.636 1.733 1.670
standard Time 0.396 0.395 0.363 0355 0.376 0.357
deviation Interaction 0.799 0.800 0.705 0.696 0.732 0.705
Level-1 error standard 0.144 0.179 0.225 0.227 0.356 0.265
deviation
Autocorrelation 0.223 0.221 0.456 0.431 0.491 0.449
CI coverage
Level.2 Intercept 0.969 0.977 0.986 0.992 0.977 0.985
error Phase 0.964 0.968 0.978 0.984 0.979 0.984
star}da}rd Time 0.989 0.990 0.981 0.990 0.991 0.994
deviation Interaction 0.985 0.984 0.981 0.990 0.983 0.993
Level-1 error standard 0.978 0.991 0.845 0.973 0.617 0.953
deviation
Autocorrelation 0.989 0.999 0.784 0.939 0.743 0.916
CI width
Intercept 7.189 7.156 6.182 6.223 6.358 6.350
Level-2
error Phase 9.198 9.245 8.736 8.780 8.972 8.850
star_lda}rd Time 2.247 2.242 2.075 2.077 2.134 2.088
deviation Interaction 2.247 3.924 2.075 3.580 2.134 3.581
Level-1 error standard 0.652 0.976 0.679 1.057 0.695 1.125
deviation
Autocorrelation 1.078 1.359 1.081 1.424 1.069 1.430
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These results imply that the degree of the autocorrelation had little to no impact on the estimates

of the fixed treatment effects and the variance components.

Follow-Up Study: Study 3

In terms of the method of generating heterogeneity in the level-1 error structure, in the
main study, data having the heterogeneous level-1 error structure had been generated in a way
that every case included in the study had a unique value of the level-1 error standard deviation
and autocorrelation within a specified range. However, it is possible that the values will not be
evenly spread out within a specified range in a real dataset. Instead, one or more cases can have a
substantial difference of the level-1 error standard deviation and the autocorrelation. For
example, Baek, Petit-Bois, Van den Noortgate, Beretvas, and Ferron (2014) found that in a real
dataset from a single-case study, one of the cases had a substantially larger variance compared
with the other cases, which can lead to differences in the level-1 error variance and the
autocorrelation. Therefore, in Study 3, data were generated in a way that one case had a
substantial difference in the level-1 error variance and the autocorrelation compared to the other
cases (extremely heterogeneous error structure). More specifically, one case had a 16 times
bigger level-1 error variance than the other cases, and an autocorrelation that was either half or
twice as large as the other cases (either .2 and .4, or .4 and .2). All other cases were generated to
have a same level-1 error variance (1) and autocorrelation value (either .2 or .4). This extreme
condition in which one case had 16 times the level-1 error variance of the others was selected
based on the finding from Baek and Ferron (2013). They found that when they allowed the level-
1 error variance to vary across cases in real datasets, the largest level-1 error variance ranges up

to 16 times the smallest. Thus, in Study 3, there were 8 conditions simulated using the three
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factors. These factors were (1) the analysis method for modeling level-1 error structure (not
modeling between case variation (Model 1), and modeling between case variation (Model 2); (2)
the combination of number of cases and series length per case (4, 10 or 8, 20); and (3) the
combination of level of autocorrelation for the extreme case and the rest of the cases (.2, .4 or .4,
.2). All other factors used in the main study were fixed; (1) the true level-1 error structure,
extremely heterogeneous; (2) the variation in the level-2 errors, most of the variance at level-

1(.5, .05). This yielded a 2x2x2 factorial design.

Results of the study

The outcomes of all of the simulated conditions for the fixed treatment effects and
variance components are provided in Tables 8 and 9. The results of the fixed treatment effects
and the variance components from this study were different from the main study. Unlike the
main study that shows the different modeling methods for the level-1 error structure had little to
no impact on the estimates of the fixed treatment effects, this study found that the different
modeling methods for the level-1 error structure had some impact on the estimates of the fixed
treatment effects. The average bias and RMSE values were generally smaller when estimated by
Model 2 where between case variation was modeled. In addition, unlike the main study that
showed the different modeling methods for the level-1 error structure had little to no impact on
the estimates of the level-2 error standard deviation, this study found that the different modeling
methods for the level-1 error structure had some impact on the estimates of the level-2 error
standard deviation. Since this study only has one type of true level-1 error structure, extremely
heterogeneous, Model 1 represents the under-specified condition in that the model assumed a

homogeneous level-1 error structure but the data had a heterogeneous level-1 error structure, and
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Model 2 represents the over-specified condition in that the model assumed a heterogeneous
level-1 error structure where everyone had their unique value of the level-1 error variance and
the autocorrelation value, but the data had a heterogeneous level-1 error structure where only one

case had a different level-1 error variance and autocorrelation value than others.

Table 8
The results of the fixed treatment effects for Study 3

Series Variation Intercept Phase Time Interaction
length | Number in the Model | Model | Model | Model | Model | Model | Model | Model
per of cases level-2 1 2 1 2 1 2 1 2
case errors Bias
Extreme(.2,
4) 0.025 0.020 0.030 0.008 0.006 0.010  -0.008  -0.008
10 4
Extreme( .4,
4) -0.003  -0.021  -0.033  -0.032 0.003 0.009 0.023 0.008
Extreme(.2,
4) 0.013 0.006  -0.005 -0.006 -0.008 -0.007 0.007 0.005
20 8
Extreme(.4,
4) -0.029  -0.017  -0.008  -0.006 0.005 0.002  -0.003 0.002
RMSE
Extreme(.2,
4) 0.920 0.702 1.440 1.029 0.342 0.255 0.626 0.410
10 4
Extreme( .4,
4) 0.877 0.668 1.411 0.989 0.349 0.256 0.642 0.419
Extreme(.2,
4) 0.435 0.362 0.585 0.446 0.104 0.093 0.148 0.113
20 8
Extreme(.4,
4) 0.439 0.351 0.587 0.442 0.106 0.095 0.140 0.111
CI coverage
Extreme(.2,
4) 0.999 1.000 0.999 1.000 0.996 0.998 0.999 1.000
10 4
Extreme( .4,
4) 0.999 0.998 1.000 1.000 0.998 1.000 1.000 1.000
Extreme(.2,
4) 0.982 0.965 0.993 0.973 0.968 0.971 0.977 0.971
20 8
Extreme(.4,
4) 0.977 0.971 0.990 0.989 0.959 0.964 0.976 0.968
CI width
Extreme(.2,
4) 7.213 6.157  11.307 9.329 2318 1.942 5.465 4.354
10 4
Extreme( .4,
4) 7.147 6.087 11.278 9.244 2.333 1.947 5.536 4.382
Extreme(.2,
4) 2.053 1.748 2.910 2.279 0.495 0.459 0.711 0.575
20 8
Extreme(.4,
4) 2.066 1.766 2.942 2.328 0.491 0.459 0.684 0.569
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Table 9

The results of the variance components for Study 3

Level-1 error

i‘:;}sl Numb V?rrli?}tlieon Level-2 error standard deviation standard deviation Autocorrelation
per :;s(e)zg level-1 Intercept Phase Time Interaction Model 1 | Model 2 | Model | ypooo
case errors | Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | Model I | Model 2 1
Bias
E(";ref;e 1.657 1331 2944 2299 0459 0380 1568 1.139 0326  0.035 -0374 -0.300
10 4 o
E(Xffef)le 1.616 1305 2927 2260 0461 0384 1591  1.151 0340  0.031 -0265 -0.197
E(";ref)‘e 0.189  0.125 0459 0251 0038 0038 0.103  0.051 0292  -0.009 -0387 -0.354
20 8 -
E(’fffejge 0204 0.137 0493 028  0.035 0.038 0082 0.045 0290 -0.006 -0.236 -0.205
RMSE
Extreme
2.4 2013 1587 3461 2620 0526 0435 1962 1335 1424 0661 0494 0367
10 4 -
E("fef;e 1960  1.554 3422 2568  0.525 0447 2007 1373 1430 0.655 0416 0321
E(";ref;e 0474 0377 0797 0500 0.101  0.096 0214  0.129  1.054 0357 0432 0382
20 8 o
E(’fef)le 0.487 0382 0818  0.505  0.100 0098  0.190  0.123  1.052 0359 0301  0.258
CI coverage
Extreme
2.4 0946 0988 0927 0974 098 0998 0893 0985 0055 0932 0.674 0972
10 4 o
E(’fef)le 1.000  0.993 0938 0985 0988 0995 0907 0982  0.057 0935 0748  0.955
E(";ref)‘e 0977 0970 0933 0980 0955 0959 0918 0967  0.000 0935  0.173  0.582
20 8 -
E(’fffejge 0976 0971 0931 0978 0954 0945 0939 0979 0002 0932 0407  0.848
CI width
Extreme
2.4 9.707 8549  15.197 12950 2907 2556 2907  6.199 1283 2099 0970  1.436
10 4 -
E("fef;e 9.598 8447 15182 12.851 2922 2564 2922 6239 1287 2091 0964  1.429
E(";ref;e 2037 1.834 2949 2462  0.440 0422 0440 0.614 0414 0965 0381  0.767
20 8 o
E(Xffef)le 2051 1853  3.000 2536 0437 0422 0437  0.609 0413 0967 0382  0.771
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Figure 150 illustrated that the average bias values of the treatment effect for phase were
minimal and similar across the two models, and Model 2 (over-specified) had less variability of
the bias values than Model 1(under-specified). One of the data factors, the combination of the
autocorrelation of the extreme case and the autocorrelation for the others, had an impact on the
average bias of the shift in level. When the extreme case had an autocorrelation of .2, which
indicated that the rest of cases had an autocorrelation of .4, the average bias value for Model 1
was positive, but the average bias value for Model 2 was close to 0. In addition, Model 2 had
substantially less variability of bias values than Model 1. However, when extreme case had an
autocorrelation of .4, which indicated that the rest of cases had an autocorrelation of .2, the
average bias values for Model 1 and Model 2 were both negative.

Similarly, Figure 151 illustrated that the average bias values of the treatment effect for
the interaction were minimal and similar across the two models, but Model 2, which was the
over-specified model, had less variability of the bias values than Model 1. The factor of the
autocorrelation of the extreme case and others also had an impact on the average bias of the shift
in slope. When extreme case had an autocorrelation of .2, which indicated that the rest of cases
had an autocorrelation of .4, the average bias value for both Model 1 and 2 were close to 0, and
Model 2 had less variability than Model 1. However, when the extreme case had an
autocorrelation of .4, which indicated that the rest of cases had an autocorrelation of .2, the
average bias values for Model 1 and Model 2 were both positive, and Model 1 had substantially

larger variability than Model 2.
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Figure 150. Box plots depicting the estimated bias of the treatment effect for shit in level
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Figure 151. Box plots depicting the estimated bias of the treatment effect for shit in slope
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Figure 152. Box plots depicting the estimated RMSE of the treatment effect for shift in level and
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Figure 152 portrays that the average RMSE values of the treatment effect for phase and
the interaction were different across the two models. Model 2 had smaller average RMSE values
and less variability of the RMSE values than Model 1. These results were consistent regardless
of the pairing of the autocorrelation of the extreme case and others. The rest of the outcomes, the
CI coverage and the width had similar results with the results from the main study. The interval
coverage for the fixed treatment effects tended to be overly conservative for both models, and the
interval width values were similar across the two models.

In terms of the variance components, the average bias and RMSE values of the level-2
error standard deviation for phase and the interaction were similar across the two models.
However, Model 2 had generally smaller average bias and RMSE values than Model 1. These
results of the average bias and RMSE values of the level-2 error standard deviation for phase and
the interaction are illustrated in Figures 153 and 154. These results were consistent regardless of
the different pairings of the autocorrelation of the extreme case and others.

In addition, the CI coverage of the level-2 error standard deviation for phase and the
interaction were substantially different across the two models. As illustrated in Figure 155, the
CIs under covered when estimated by Model 1 for both the level-2 error standard deviation for
phase and the interaction, but over covered when estimated by Model 1 for both the level-2 error
standard deviation for phase and the interaction. The CI width values of the level-2 error

standard deviation for phase and the interaction were similar across the two models.
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Similar to the results from the main study, the different modeling methods in level-1 error
structure had substantial impacts on the estimates of the level-1 error standard deviation and the
autocorrelation. Figure 156 illustrated that the average bias values of the level-1 error standard
deviation and the autocorrelation were substantially different across the two models. Model 2
had smaller average bias values than Model 1 for both the level-1 error standard deviation and
the autocorrelation.

Similarly, the average RMSE values of the level-1 error standard deviation and the
autocorrelation were also different across the two models. Model 2 had smaller average RMSE
values than Model 1 for both the level-1 error standard deviation and the autocorrelation.

In addition, the average CI coverage of the level-1 error standard deviation and the
autocorrelation were substantially different across the two models. As illustrated in Figure 157,
the CIs substantially under covered when estimated by Model 1 for both the level-1 error
standard deviation and the autocorrelation, but provided coverages close to the nominal level for
the level-1 error standard deviation and slightly under the nominal level for the autocorrelation
when estimated by Model 2.

Lastly, the interval width was smaller when estimated by Model 1 than Model 2. These
results imply that the nature of the heterogeneity in the data (i.e., an outlying case versus an even
spread of level-1 error variances) might impact the effect of heterogeneity on the estimates of the

fixed treatment effects and the variance components.
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CHAPTER FIVE: DISCUSSION

This chapter provides a summary of the studies and results, along with a discussion of the
findings, limitations of the studies, and implications for applied single-case researchers and

methodologists.

Summary of the Studies

Purpose

The purpose of the studies was to extend the MLM modeling in single-case design to
allow between case variation in the level-1 error structure such that the estimated level-1 error
variance and autocorrelation varies across cases, and to identify the consequences of not
modeling and modeling between case variation in the level-1 error structure for single-case

studies using Bayesian estimation.

The Main Study
Research questions. Research questions for the main study are following:

1. What are the consequences of modeling and not modeling between case variation in the
level-1 error structure in terms of estimation of the fixed treatment effects in single-case

design?
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1) to what extent are the bias and RMSE for the fixed treatment effects impacted as
a function of design factors (number of cases and series length per case), and data
factors (true level-1 error structure and variation in the level-2 errors)?

2) to what extent are the credible interval coverage and width for the fixed
treatment effects impacted as a function of design factors (number of cases and
series length per case), and data factors (true level-1 error structure and variation
in the level-2 errors)?

2. What are the consequences of modeling and not modeling between case variation in the
level-1 error structure in terms of estimation of the variance components in single-case
design?

1) to what extent are the bias and RMSE for the variance components impacted as
a function of design factors (number of cases and series length per case), and data
factors (true level-1 error structure and variation in the level-2 errors)?

2) to what extent are the credible interval coverage and width for the variance
components impacted as a function of design factors (number of cases and series
length per case), and data factors (true level-1 error structure and variation in the
level-2 errors)?

Method. Monte Carlo simulation methods were used to address the research questions.
In the study, multiple data, design and analysis factors were manipulated. This study used a
2x2x3x2x2 factorial design. These factors were the (1) number of cases (4 and 8); (2) series
length per case (10 and 20); (3) true level-1 error structure (homogeneous, moderately
heterogeneous, and severely heterogeneous); (4) variation in the level-2 errors (most of the

variance at level-1 and most of the variance at level-2); (5) analysis methods for modeling level-
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1 error structure (not modeling between case variation (Model 1), and modeling between case
variation (Model 2). For each of the 48 conditions, 1,000 data sets were generated using SAS
IML (SAS Institute Inc., 2008). These data sets were then analyzed using WinBUGS software.
This study first examined the convergence criteria by using a sample of simulated data
sets to test convergence and to make decisions about the number of iterations, and the burn-in
period. Secondly, this study examined the fixed effects (i.e., average treatment effect for phase
and the interaction) and the variance components (i.e., level-2 error standard deviation for phase

and the interaction, level-1 error standard deviation, and autocorrelation) in a multilevel model.

Follow-Up Study: Study 2

Research questions. Research questions for Study 2 are following:

1. What are the consequences of modeling and not modeling between case variation in the
level-1 error structure in terms of estimation of the fixed treatment effects in single-case
design?

1) to what extent are the bias and RMSE for the fixed treatment effects impacted as
a function of the true level-1 error structure when the average level of
autocorrelation is .4?

2) to what extent are the credible interval coverage and width for the fixed
treatment effects impacted as a function of the true level-1 error structure when
the average level of autocorrelation is .4?

2. What are the consequences of modeling and not modeling between case variation in the
level-1 error structure in terms of estimation of the variance components in single-case

design?
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1) to what extent are the bias and RMSE for the variance components impacted as
a function of the true level-1 error structure when the average level of
autocorrelation is .4?
2) to what extent are the credible interval coverage and width for the variance
components impacted as a function of the true level-1 error structure when the
average level of autocorrelation is .4?
Method. Monte Carlo simulation methods were used to address the research questions.
In the study, multiple data and analysis factors were manipulated. This study used a 2x3 factorial
design. These factors were (1) true level-1 error structure (homogeneous, moderately
heterogeneous, and severely heterogeneous); (2) analysis method for modeling the level-1 error
structure (not modeling between case variation (Model 1), and modeling between case variation
(Model 2)). Autocorrelation was fixed as .4 and all other factors used in the main study were also
fixed; (1) the number of cases, 4 ; (2) the series length per case, 10; (3) the variation in the level-
2 errors, most of the variance at level-1 (.5, .05). For each of the 6 conditions, 1,000 data sets
were generated using SAS IML (SAS Institute Inc., 2008). These data sets were then analyzed
using WinBUGS software.
This study examined the fixed effects (i.e., average treatment effect for phase and the
interaction) and the variance components (i.e., level-2 error standard deviation for phase and the

interaction, level-1 error standard deviation, and autocorrelation) in a multilevel model.

Follow-Up Study: Study 3

Research questions. Research questions for Study 3 are following:
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1. What are the consequences of modeling and not modeling between case variation in the
level-1 error structure in terms of estimation of the fixed treatment effects in single-case
design?

1) to what extent are the bias and RMSE for the fixed treatment effects impacted as
a function of the pairing of the number of cases and series length per case (4, 10
or 8, 20), and the pairing of the level of autocorrelation for the extreme case and
the rest of the cases (.2, .4 or .4, .2) when the true level-1 error structure is
characterized as having one case with variance that is 16 times the variance of the
other cases (extremely heterogeneous)?

2) to what extent are the credible interval coverage and width for the fixed
treatment effects impacted as a function of the pairing of the number of cases and
series length per case (4, 10 or 8, 20), and the pairing of the level of
autocorrelation for the extreme case and the rest of the cases (.2, .4 or .4, .2) when
the true level-1 error structure is characterized as having one case with variance
that is 16 times the variance of the other cases (extremely heterogeneous)?

2. What are the consequences of modeling and not modeling between case variation in the
level-1 error structure in terms of estimation of the variance components in single-case
design?

1) to what extent are the bias and RMSE for the variance components impacted as
a function of the pairing of the number of cases and series length per case (4, 10
or 8, 20), and the pairing of the level of autocorrelation for the extreme case and

the rest of the cases (.2, .4 or .4, .2) when the true level-1 error structure is
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characterized as having one case with variance that is 16 times the variance of the
other cases (extremely heterogeneous)?

2) to what extent are the credible interval coverage and width for the variance
components impacted as a function of the pairing of the number of cases and
series length per case (4, 10 or 8, 20), and the pairing of the level of
autocorrelation for the extreme case and the rest of the cases (.2, .4 or .4, .2) when
the true level-1 error structure is characterized as having one case with variance
that is 16 times the variance of the other cases (extremely heterogeneous)?

Method. Monte Carlo simulation methods were used to address the research questions. In
the study, multiple data and analysis factors were manipulated. This study used a 2x2x2 factorial
design. These factors were (1) analysis method for modeling the level-1 error structure (not
modeling between case variation (Model 1), and modeling between case variation (Model 2));
(2) the pairing of the number of cases and series length per case (4, 10 or 8, 20); (3) the pairing
of the level of autocorrelation for the extreme case and the rest of the cases (.2, .4 or .4, .2). All
other factors used in the main study were fixed; (1) the true level-1 error structure, extremely
heterogeneous such that one case has variance that is 16 times the variance of the other cases; (2)
the variation in the level-2 errors, most of the variance at level-1(.5, .05). For each of the 8
conditions, 1,000 data sets were generated using SAS IML (SAS Institute Inc., 2008). These data
sets were then analyzed using WinBUGS software.

This study examined the fixed effects (i.e., average treatment effect for phase and the
interaction) and the variance components (i.e., level-2 error standard deviation for phase and the

interaction, level-1 error standard deviation, and autocorrelation) in a multilevel model.
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Discussion of the Studies Results

Convergence

As the complexity of the model increased, such that the model required more parameters
to be estimated, a longer iteration run was required. Therefore, when the data were analyzed by
Model 2, it required more iterations than when the data were analyzed by Model 1. In addition,
the parameters that required the most iterations to meet the convergence criteria were the level-2
error standard deviation parameters, especially the level-2 error standard deviation of the phase
parameter. Based on the pilot test of a sample of simulated data sets, this study used a burn-in of
2,000 iterations and ran an additional 500,000 iterations, but only used 50,000 samples of the
500,000 iterations to form the posterior distribution for all analyses by thinning at every 10" of
the iterations.

All convergence criteria that were used in this study (i.e., trace and history plots, Kernel
density plots, Brooks—Gelman—Rubin (BGR) plots) were met for all tested datasets and for all
estimated parameters. The computational accuracy index, MC error, was also satisfied in that it
was less than .05 for all tested datasets and all estimated parameters. Convergence rates that
indicated the number of samples that completely analyzed each condition were over 97% for all

48 conditions.

The Main Study
Fixed treatment effects. The consequences of modeling and not modeling between case
variation in the level-1 error structure in terms of estimation of the fixed effects were examined

in terms of four outcome measures: bias, RMSE, credible interval coverage and width. The
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results indicated that for the treatment effects, the shift in level and the shift in slope, the average
bias values were close to 0, regardless of modeling (Model 2) and not modeling (Model 1)
between case variation in the level-1 error structure. In addition, there were no design factors that
had meaningful effects on the average bias values of the shift in level and shift in slope. The
unbiased fixed effect estimates found in the current study are consistent with the previous
research regarding the inferences made from the fixed effects in both the two-level and the three-
level models (Ferron et al., 2009; Owen, 2011; Merlande, 2014; Ferron, Dailey, & Yi, 2002;
Kwok et al., 2007).

Similarly, the average RMSE values for both treatment effects were similar across the
two models. However, the average RMSE values were impacted by three of the design factors,
the number of cases, the series length per case, and the variation in the level-2 errors. As the
number of cases and the series length per case increased, the average RMSE values decreased.
As the variation in the level-2 errors shifted from most of the variance at level-2 to most of the
variance at level-1, the average RMSE values decreased.

An examination of the credible interval coverage indicated that the average interval
coverages tended to be over the nominal level for both models. There were two design factors
that had impact on the average credible interval coverage. As the number of cases increased, the
average credible interval coverage for both treatment effects approached the nominal level. As
the series length per case increased, the average credible interval coverage for the shift in slope
approached the nominal level. The analysis of the credible interval width revealed that the
average credible interval width was similar across the two models.

These findings from the fixed effects suggest that if possible, researchers should increase

their level-2 and level-1 sample sizes (number of cases and series length per case). In addition,

254

www.manaraa.com



these findings are consistent with previous literature related to two level or three level models for
single-case data that states larger numbers of upper level units lead to greater accuracy and
precision (Ferron et al., 2009; Merlande, 2014; Owen, 2011).

In addition, an exploration of the different types of specifications (under-specified,
correctly-specified, and over-specified) in the level-1 error structure revealed that the different
types of specifications had little to no impact on the estimates of the fixed effects. The average
bias values were close to 0, regardless of the different types of specifications in the level-1 error
structure. The average RMSE values were similar across the three types of specifications, the
average interval coverages were over the nominal level for all three types of specifications, and
the average interval widths were similar across all three types of specifications. These results
also supported the findings of previous multilevel modeling and the latent growth curve
modeling work which showed that the estimates of the fixed effects appear not to be biased by
the misspecification of the level-1 error structure tests of the fixed effects (Ferron, 2002; Kwok
et al., 2007; Merlande, 2014; Sivo, Fan & Witta, 2005). One interesting finding is that the
interval coverages were consistently over the nominal level across models and across model
specifications. This finding is different from studies that have examined REML estimation of
multilevel models for single-case data (e.g., Shadish & Rindskopf, 2007; Shadish, Rindskopf, &
Hedges, 2008; Van den Noortgate & Onghena, 2003a, 2003b, 2007, 2008; Ferron et al., 2009;
Merlande, 2014; Owen, 2011), where the CI coverage is very close to the nominal level across
conditions, but can be explained by an impact of the Bayesian estimation method. Baek, Petit-
Bois, and Ferron (2014) found that there was an impact of estimation method (REML versus
Bayesian) on estimating multilevel models for single-case studies. Specifically for the average

interval coverage, Baek and her colleague found that the average CI coverage rates for the fixed
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effects tended to be over the nominal level when using the Bayesian estimation method, while
they tended to be close to the nominal level or slightly under when using the REML estimation
method.

Variance components. The consequences of modeling and not modeling between case
variation in the level-1 error structure in terms of estimation of the variance components were
examined in terms of four outcome measures: bias, RMSE, credible interval coverage and width.
The results indicated that the level-2 error standard deviation estimates for shift in level and shift
in slope were positively biased for both Model 1 and 2. Two design factors, the number of cases
and the series length per case, had some impact on the estimates of the level-2 error standard
deviation. As the number of cases increased, the average bias of the level-2 error standard
deviation for shift in level was decreased. The impact of the series length per case on the average
bias of the level-2 error standard deviation for shift in slope was dependent on the number of
cases. As the number of cases increased, the impact of the series length per case on the average
bias of the level-2 error standard deviation for shift in slope decreased. These findings are
consistent with the previous studies that had generally found a substantial bias in the variance
components across the various conditions (Kwok et al., 2007; Murphy & Pituch, 2009; Ferron et
al., 2009; Merlande, 2014; Owen, 2011). These findings also suggest that as the number of upper
units increased, the impact of the number of lower units decreased. Thus, if possible, researchers
should try to increase their level-2 units sample size. These results were also supported by the
previous work that had revealed the variance components were more biased when the number of
cases and the series length per case was small (Kwok et al., 2007; Murphy & Pituch, 2009;
Ferron et al., 2009). The impact of the upper units sample size on the bias estimate of the

variance components, related with the treatment effects, seems to be showing more in the two-
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level model studies. Previous studies with the three-level single-case models had not found
explicitly this relationship between the upper level unit sample size with the bias estimate of the
variance components for the treatment effects (Merlande, 2014; Owen, 2011).

Similarly, the average RMSE values of the level-2 error standard deviation for shift in
level and shift in slope were similar across the two models. Three of the design factors, the
number of cases, the series length per case, and the variation in the level-2 errors had some
impact on the estimates of the level-2 error standard deviation. As the number of cases increased,
the average RMSE values for both level-2 error standard deviations decreased. As the variation
in the level-2 errors shifted from most of the variance at level-2 to most of the variance at level-
1, the average RMSE value of the level-2 error standard deviation for shift in level decreased. As
the series length per case increased, the average RMSE value of the level-2 error standard
deviation for shift in slope decreased.

An examination of the credible interval coverage of the level-2 error standard deviation
for shift in level and shift in slope indicated that the credible interval coverages tended to be over
the nominal level for both models. Four of the design factors, the variation in the level-2 errors,
the type of model, the series length per case, and the true level-1 error structure, had a
meaningful impact on the average interval coverage of the level-2 error standard deviations.
Generally, Model 2 was more conservative than Model 1 in that it had coverage estimates that
were further above the nominal level. As the variation in the level-2 errors shifted from most of
the variance at level-1 to most of the variance at level-2, the average credible interval coverage
of the level-2 error variance for shift in level approached the nominal level. An impact of the
variation in the level-2 errors on the average interval coverage of the level-2 error standard

deviation for shift in slope was dependent on the true level-1 error structure. As the variation in
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the level-2 errors shifted from most of the variance at level-1 to most of the variance at level-2,
the average credible interval coverage of the level-2 error variance for shift in slope approached
the nominal level across all three true level-1 error structures. However, the average interval
coverage in the moderately heterogeneous error structure was impacted the most by the variation
in the level-2 errors. The analysis of the credible interval width for the level-2 error standard
deviations revealed that the average credible interval widths were similar across the two models.
Three of the design factors had some impact on the credible interval width of the level-2 error
standard deviations. As the number of cases increased, and the variation in the level-2 errors
shifted from most of the variance at level-2 to most of the variance at level-1, the average width
of the ClIs for the level-2 error standard deviations decreased. As the series length per case
increased, the average width of the CIs for the level-2 error standard deviation for shift in slope
decreased. Similar to the results of the CI coverages in the fixed effects, the CI coverages of the
level-2 standard deviations were over the nominal level. This finding is not consistent with the
previous work that had found the CI coverages of the level-2 error variances were under the
nominal level. Both of the studies with the two-level models (Ferron et al., 2009) and the three-
level models (Owen, 2011; Merlande, 2014) of the single-case data using the REML estimation
method had found that the CI coverages of the level-2 error variances were generally under the
nominal level. This contradictory finding of the current study could also be explained by an
impact of the Bayesian estimation method. Although Baek and her colleagues (2014) had not
explicitly looked at the average CI coverage rates for the variance components, given the impact
of the Bayesian estimation method on the average CI coverage rates for the fixed effects, it
would seem reasonable to assume that there could be an impact of the Bayesian estimation

method on the CI coverage rates for the variance components.
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In addition, an exploration of the different types of specifications (under-specified,
correctly-specified, and over-specified) in the level-1 error structure revealed that the different
types of specifications had little to no impact on the estimates of the level-2 error standard
deviations. The level-2 error standard deviation for shift in level and shift in slope were similar
and positively biased across the three types of specifications in the level-1 error structure. The
average RMSE values were similar across the three types of specifications, the average interval
coverages were over the nominal level for all three types of specifications, and the average
interval widths were similar across all three types of specifications. Although the interval
coverages and widths were similar across all three types of specifications, the over-specified type
generally had higher coverage probabilities (more conservative) and wider interval widths than
the other types of specifications. These results also supported the findings of the previous work,
with the three-level model of the single-case data, that had found the bias of the level-2 error
variances were comparable across the different types of the specifications (Merlande, 2014).
Overall, these findings suggest that the different modeling in the level-1 error structures had no
or little impact on the estimates of the level-2 error standard deviations.

Unlike the level-2 error standard deviations, the results for the level-1 error standard
deviation and the autocorrelation indicated that different modeling of the level-1 error structure
had a substantial impact on the estimates of the level-1 error standard deviation and the
autocorrelation. Consistent to the previous research on the two-level and the three-level models,
with the single-case data, that had found the level-1 error variance was biased (Ferron et al.,
2009; Merlande, 2014; Owen, 2011), the average level-1 error standard deviations of the current
study were similar and positively biased for both models. However, there were some differences

between Model 1 and Model 2 within the true level-1 error structure. For Model 1, the bias of the
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level-1 error standard deviation increased constantly as the true level-1 error structure shifted
from the homogeneous to the moderately heterogeneous to the severely heterogeneous error
structure. However, for Model 2, the bias of the level-1 error standard deviation increased as the
true level-1 error structure shifted from the homogeneity to the moderately heterogeneous error
structure, but decreased as the true level-1 error structure shifted from the moderately
heterogeneous to the severely heterogeneous error structure. The analysis of the average RMSE
value indicated that there was a difference across the two models. There were substantial
differences between Model 1 and Model 2 within the true level-1 error structure. For the
homogeneous error structure, the average RMSE value was larger when estimated by the Model
2 than Model 1, but for the heterogeneous error structures, the average RMSE values were
smaller when estimated by Model 2 than Model 1. In addition, as the series length per case
increased, the average RMSE value decreased regardless of the type of models.

An examination of the average credible interval coverage revealed that there were
substantial differences between the two models across the true level-1 error structures. For the
homogeneous error structure, the average credible interval coverage was over the nominal level
across the two models. For both heterogeneous error structures, the average credible interval
coverage was substantially under the nominal level for Model 1, but either approached the
nominal level or was slightly over the nominal level for Model 2. In addition, as the series length
per case increased, the interval coverage decreased. Previous studies also had found impact of
the series length per case on the CI coverage of the level-1 error variance (Merlande, 2014).

The analysis of the CI width indicated that the CI width for Model 1 was smaller than the
CI width for Model 2. Moreover, as the number of cases and the series length per case increased,

the CI width decreased. These findings are consistent with the previous work that had found the
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CI width of the level-1 error variance decreased as the series length per case and the number of
cases increased (Merlande, 2014; Owen, 2011; Ferron et al., 2009).

The results of the autocorrelation were very similar with the results of the level-1 error
standard deviation. The autocorrelation values were similar and negatively biased for both
models, which is consistent with the previous work that had found the estimate of the
autocorrelation was generally biased (Ferron et al., 2009; Merlande, 2014). However, there were
substantial differences across the true level-1 error structures. The autocorrelation values were
more biased when the true level-1 error structure was one of the heterogeneous error structures
than the homogeneous error structure. In addition, the autocorrelation parameter tended to be
slightly more biased when estimated by Model 1 than Model 2 for all three types of the level-1
error structures.

Similarly, the analysis of the average RMSE value indicated that the average RMSE
values of the autocorrelation were similar across the two models. However, there were
substantial differences across the true level-1 error structures. The average RMSE value was
larger for the heterogeneous error structures than the homogeneous error structure, regardless of
the type of model. In addition, for the homogeneous error structure, the average RMSE value
was larger when estimated by Model 2 than Model 1, but for the heterogeneous error structures,
the average RMSE values were smaller when estimated by Model 2 than Model 1. Moreover, as
the series length per case increased, the average RMSE value decreased regardless of the type of
model.

An examination of the average credible interval coverage revealed that there were
substantial differences between the two models across the true level-1 error structures. For the

homogeneous error structure, the average credible interval coverage was over the nominal level
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across the two models. For the heterogeneous error structures, the average credible interval
coverage was substantially under the nominal level for Model 1, but either approached the
nominal level or was slightly over the nominal level for Model 2. In addition, an impact of the
series length per case on the CI coverage was dependent on the true level-1 error structure. The
impact of the series length per case was smaller when the true level-1 error structure was the
homogeneous error structure than one of the heterogeneous error structures, and as the severity
of the heterogeneity in the level-1 error structure increased, the impact of the series length per
case increased greatly.

The analysis of the CI width indicated that the average CI width for Model 1 was smaller
than the average CI width for Model 2. Moreover, as the number of cases and the series length
per case increased, the CI width decreased.

These findings from the level-1 error standard deviation and autocorrelation indicated
that Model 2 provides better estimates of some of the variance components when analyzing data
that are severely heterogeneous. These findings also suggest that researchers should model
between case variation in the level-1 error structure when they analyze data that have a severely
heterogeneous level-1 error structure.

In addition, an exploration of the different types of specifications (under-specified,
correctly-specified, and over-specified) of the level-1 error structure revealed that the different
types of specifications had substantial impacts on the estimates of the level-1 error standard
deviation and the autocorrelation. The level-1 error standard deviation was different and
positively biased across the three types of specifications in the level-1 error structure. The over-
specified type had the smallest bias and variability, and the under-specified type had the largest

bias value among the three types of specifications. Similarly, the average RMSE values were
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different across the three types of specifications. The over-specified type had the smallest
average RMSE value and variability, and the under-specified type had the largest average RMSE
value and variability. The average interval coverage was under the nominal level for the under-
specified type, close to the nominal level for the correctly-specified type, and over the nominal
level for the over-specified type. The average interval width was smaller for the under-specified
type than other types of specifications. These findings indicate that the estimates of the level-1
error standard deviation are better when the level-1 error structure is either correctly-specified or
over-specified, rather than under-specified. These findings were also consistent with the findings
from the previous work which showed that the correctly-specified, and the over-specified, level-
1 error structures tended to work better than the under-specified level-1 error structure, in terms
of the estimates and inferences of the variance components in a multilevel model (Kwok et al.,
2007; Merlande, 2014; Sivo, Fan & Witta, 2005).

The results for the autocorrelation were very similar with the results for the level-1 error
standard deviation. The autocorrelation was negatively biased for both the under-specified and
the correctly-specified, but was close to 0 for the over-specified type. Similarly, the over-
specified type had the smallest average RMSE value and variability, and the under-specified type
had the largest average RMSE value and variability. The average interval coverage was under
the nominal level for the under-specified type, close to the nominal level for the correctly-
specified type, and over the nominal level for the over-specified type. The average interval width
was smaller for the under-specified type than other types of specifications. These findings
indicate that the estimates of the autocorrelation are better when the level-1 error structure is
either the correctly-specified or over-specified, as opposed to under-specified. These findings

were also consistent with the findings, from the previous work, which showed that the correctly-
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specified and the over-specified level-1 error structures, tended to work better than the under-
specified level-1 error structure, in terms of the estimates and inferences of the variance
components in a multilevel model (Kwok et al., 2007; Merlande, 2014; Sivo, Fan & Witta,
2005).

These findings from the level-1 error standard deviation and the autocorrelation also
suggest that researchers should try to select either a correctly-specified or over-specified level-1
error structure rather than an under-specified level-1 error structure when they run a multilevel

modeling for single-case data.

Follow-Up Study: Study 2

The results of the fixed effects and the variance components from the main study that
used 0.2 as the average autocorrelation value were very similar to the results of the fixed effects
and variance components from Study 2 that used 0.4 as the average autocorrelation value. The
different modeling methods for the level-1 error structure had little to no impact on the estimates
of the fixed effects, but had a substantial impact on the estimates of the variance components,
especially the level-1 error standard deviation and the autocorrelation parameters.

Fixed treatment effects. Fixed effects were analyzed in terms of bias, RMSE, credible
interval coverage and widths. The estimates of the shift in level and the shift in slope were not
biased for either Model 1 or Model 2. The average RMSE values for the shift in level and the
shift in slope were similar across the models. The confidence intervals for the shift in level and
the shift in slope tended to be overly conservative for both models, producing coverage

probabilities above the nominal level. The interval widths were similar across the two models. In
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addition, different types of specifications in the level-1 error structure had little to no impact on
the estimates of the shift in level and the shift in slope.

Variance components. Variance components were also analyzed in terms of bias,
RMSE, credible interval coverage and widths. For the variance components, the different
modeling methods in the level-1 error structure had little to no impact on the estimates of the
level-2 error standard deviations for phase and the interaction. Unlike the level-2 error standard
deviations, the level-1 error standard deviation and autocorrelation showed some differences in
terms of the results across Model 1 and Model 2. The average bias and RMSE values were
similar across the models, but the average CI coverage values were substantially different across
the two models. The coverage probabilities were substantially under the nominal level when
estimated by Model 1, but close to the nominal level when estimated by Model 2. The interval
width was smaller when estimated by Model 1 than estimated by Model 2. In addition, different
types of specifications of the level-1 error structure had a substantial impact on the estimates of
the level-1 error standard deviation and the autocorrelation. For the average bias and RMSE
values of the level-1 error standard deviation and the autocorrelation, the over-specified type had
the smallest bias and RMSE values. For the CI coverage of the level-1 error standard deviation
and the autocorrelation, the correctly-specified type works the best, in that it was the closest to
the nominal level. These findings imply that the degree of the autocorrelation had little to no
impact on the relative performance of the two models regarding the estimates of the fixed effects

and the variance components.
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Follow-Up Study: Study 3

The results of the fixed effects and the variance components from this study were
different from the main study. Unlike the main study that showed the different modeling
methods for the level-1 error structure had little to no impact on the estimates of the fixed effects,
this study found that the different modeling methods in the level-1 error structure had some
impact on the estimates of the fixed effects. The average bias and RMSE values were generally
smaller when estimated by Model 2 than Model 1. Unlike the main study that showed the
different modeling methods for the level-1 error structure had little to no impact on the estimates
of the level-2 error standard deviations, this study found that the different modeling methods for
the level-1 error structure had some impact on the estimates of the level-2 error standard
deviations, along with the level-1 error standard deviation and the autocorrelation.

Fixed treatment effects. Fixed effects were analyzed in terms of bias, RMSE,
confidence interval coverage and widths. The average bias values for the shift in level and the
shift in slope were minimal and similar across the two models, but unlike the results from the
main study, Model 2 (over-specified) had substantially less variability of the bias values than
Model 1(under-specified). One of the design factors, the pairing of the autocorrelation of the
extreme case and others, had an impact on the average bias of the shift in level and shift in slope.
For the shift in level, when the extreme case had an autocorrelation of .2, which indicated that
the rest of cases had an autocorrelation of .4, the average bias value for Model 1 was positive,
but the average bias value for Model 2 was close to 0. In addition, Model 2 (over-specified) had
substantially less variability of the bias values than Model 1(under-specified). However, when
the extreme case had an autocorrelation of .4, which indicated that the rest of the cases had an

autocorrelation of .2, the average bias values for Model 1 and Model 2 were both negative.
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Similarly, the average bias values for the shift in slope were minimal and similar across the two
models, and Model 2 (over-specified) had less variability of the bias values than Model 1(under-
specified). For the shift in level, when the extreme case had an autocorrelation of .2 which
indicated that the rest of cases had an autocorrelation of .4, the average bias value for both Model
1 and 2 were close to 0, and Model 2 (over-specified) had less variability than Model 1 (under-
specified). However, when the extreme case had an autocorrelation of .4, which indicated that
the rest of cases had an autocorrelation of .2, the average bias values for Model 1 and Model 2
were both positive, and Model 1 (under-specified) had substantially larger variability in bias
estimates than Model 2 (over-specified).

Unlike the results of the main study that showed the similar average RMSE values across
the two models, the average RMSE values of the treatment effect for the shift in level and the
shift in slope were different across the two models. Model 2 (over-specified) had a smaller
average RMSE value and less variability of the RMSE values than Model 1 (under-specified).
These results were consistent regardless of the different pairings of the autocorrelation of the
extreme case and others. The rest of the outcomes, the CI coverage and the width had similar
results with the results from the main study. The interval coverage for the fixed effects tended to
be over the nominal level for both models, and the interval width values were similar across the
two models. These findings indicate that the different modeling methods in the level-1 error
structure had substantial impact on the estimates of the fixed effects when the level-1 error
structure is the extremely heterogeneous level-1 error structure (i.e., one case has 16 times the
variance of the other cases). Generally, Model 2 (over-specified) that models between case
variation in the level-1 error structure worked better than Model 1 (under-specified) that does not

model between case variation in the level-1 error structure.

267

www.manaraa.com



Variance components. Variance components were also analyzed in terms of bias,
RMSE, confidence interval coverage, and widths. The average bias and RMSE values of the
level-2 error standard deviation for the shift in level and the shift in slope were similar across the
two models, but Model 2 (over-specified) had a generally smaller average bias and smaller
RMSE values than Model 1 (under-specified). These results were consistent, regardless of the
different pairings of the autocorrelation of the extreme case and others. Unlike the results from
the main study, the CI coverage of the level-2 error standard deviations for both treatment effects
were substantially different across the two models. The average coverage probabilities were
under the nominal level when estimated by Model 1 (under-specified), but over the nominal level
when estimated by Model 2 (over-specified). The CI widths were similar across the two models.

Similar to the results from the main study, the different modeling methods in the level-1
error structure had substantial impacts on the estimates of the level-1 error standard deviation
and the autocorrelation. The average bias values of the level-1 error standard deviation and the
autocorrelation were substantially different across the two models. Model 2 (over-specified) had
smaller average bias values than Model 1 (under-specified) for both the level-1 error standard
deviation and the autocorrelation. Similarly, the average RMSE values of the level-1 error
standard deviation and the autocorrelation were also different across the two models. Model 2
(over-specified) had smaller average RMSE values than Model 1 (under-specified) for both the
level-1 error standard deviation and the autocorrelation. In addition, the average CI coverage of
the level-1 error standard deviation and the autocorrelation were substantially different across the
two models. The average CI coverage was substantially under the nominal level when estimated
by Model 1 (under-specified) for both the level-1 error standard deviation and the

autocorrelation, but close to the nominal level for the level-1 error variance, and slightly under

268

www.manaraa.com



the nominal level for the autocorrelation when estimated by Model 2 (over-specified). Lastly, the
interval width was smaller when estimated by Model 1 (under-specified) than Model 2 (over-
specified). These findings indicate that the different modeling methods in the level-1 error
structure had substantial impact on the estimates of the variance components when the level-1
error structure was the extremely heterogeneous level-1 error structure. Generally, Model 2
(over-specified) that models between case variation in the level-1 error structure worked better
than Model 1 (under-specified) that does not model between case variation in the level-1 error
structure.

These results from Study 3 also imply that the form of heterogeneity in the data (i.e., one
extreme case versus a more even spread of the level-1 variances) might have some impact on
relative effectiveness of the two models for estimating the fixed effects and the variance
components. In addition, these results suggest that researchers should try to model between case
variation in the level-1 error structure when they analyze data that have the extremely
heterogeneous structure showing one or more cases have substantially different variability than

other cases.

Limitations of the Study

Since this study was conducted using the Monte Carlo simulation method, there are
generalizability limitations regarding this study. Although the Monte Carlo method used in this
study allowed the investigation of how various design factors can impact the parameter
estimates, specific conditions (design factors) used in the study limit the generalizability of the
study. The conditions were chosen based on a review of single-case literature and applied studies

that were done using two-level models to analyze single-case data. The specific conditions
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chosen for this study, however, are only some of the possible options that could have been
included in the study. Specifically, the follow up studies (Study 2 and Study 3) used only a few
conditions. Therefore, the results of this study can only be generalized to studies with the same
or similar conditions. Any conclusions beyond the observed conditions should be interpreted
with caution.

Another limitation is related to the model specification and the types of outcome
measure. First, this study assumed the outcome variable is continuous. There are various types of
outcomes that are commonly used in single-case studies, such as binary, ordinal, or count
outcomes which require different types of assumptions using a different distribution (e.g., Beta
distribution and Poisson distribution) (Shadish & Rindskopf, 2007; Shadish et al., 2008).

In addition, the two level model used in this study only included linear trends. However,
there are more complex trends (e.g., non-linear trends) that are also used in models to investigate
single-case data (Shadish & Rindskopf, 2007). Moreover, this study only investigated the first-
order autoregressive level-1 error structure (AR(1)). As previously mentioned, there are various
complex level-1 error structures that assume the errors to be autocorrelated, such as compound
symmetry, second order autoregressive, banded toeplitz, or moving average. The benefit of
choosing the AR(1) model is that it is one of the simplest autocorrelated level-1 error structures,
and is the most commonly studied and applied the correlated error structure for the time series
data (Velicer & Fava, 2003; West & Hepworth, 1991), and, therefore, the most logical for an

initial study into modeling between case variation in the level-1 error structure
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Implications of the Study

Although single-case researchers have recognized the misspecification effect of level-1
error structures on statistical inferences of multilevel models, researchers have overlooked how
they have made a critical homogeneity assumption about the level-1 error structure in their
studies. This study provides insight about how not modeling and modeling between case
variation in the level-1 error structure, a misspecification issue of the level-1 error structure,
impacts statistical inferences, an issue that had not previously been systematically explored. The
results lead to various implications for applied single-case researchers who are conducting
intervention studies, as well as for the methodologists who seek precise methods for determining

intervention effects when analyzing single-case research.

Implications for the Applied Single-Case Researchers

The findings from this study provide a few recommendations for researchers who
conduct single-case studies. The results of this study confirm that single-case researchers should
feel comfortable interpreting the overall average treatment effects (shift in level and shift in
slope) when they have data that show no between case variation of data, and furthermore, that
the overall average treatment effects can also be comfortably interpreted when there is some
between case variation in the variance (evenly spread out up to a variance ratio of 16), regardless
of whether the heterogeneity has been explicitly modeled. However, researchers should be
cautious to interpret overall treatment effects from a model that assumes homogeneity when they
have data that show one or more cases that have substantially different variability than other
cases. In the real world, single-case data that show one of the cases have a substantially larger

amount of variability compared with the other cases exist (e.g., Harris, Friedlander, Saddler,
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Frizzelle, & Graham, 2005). The results of this study indicate that if researchers had this kind of
data, but they failed to correctly model or specify the level-1 error structure, then the results of
the treatment effects would be inaccurate. Therefore, findings from this study suggest that
researchers need to carefully inspect their data, and if they have data that show one or more cases
that have a large amount of variability compared to the other cases, then they should try to model
between case variation in the level-1 error structure to obtain more accurate and precise average
treatment effects.

Generally, variance components were biased in multilevel modeling of single-case data
analysis. The results from this study were consistent with this previous finding. However, this
study suggests that accuracy and precision of the variance components can be improved by
modeling between case variation in the level-1 error structure. Specifically, for researchers that
have data regardless of showing or not showing between case variation, modeling between case
variation can be beneficial to improve accuracy and precision of the estimates of the variation
within cases and the autocorrelation. For researchers that have data that show one case that has a
substantially larger amount of variability compared with the other cases, modeling between case
variation can be beneficial to improve accuracy and precision of the estimates of all variance
parameters, including variation in the treatment effects across cases, and variation within cases,
and autocorrelation.

In addition, it was found that the design factors that continued to impact parameter
estimates were the number of cases and the series length per case. As the number of cases and
the series length per case increased, the accuracy and precision of the parameter estimates
increased. This conclusion suggests that researchers should try to increase the number of

participants or cases as well as the number of time points in their studies whenever possible.
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Particularly, increasing the number of participants or cases can be more beneficial since the
impact of the number of time points can be reduced if the number of participants or cases
increases.

Lastly, this study also provides a way to model between case variation in the level-1 error
structure using WinBUGS, and makes these created codes accessible to applied researchers for

use in their own research (Appendix D).

Implications for Methodologists

This study provides a few implications for methodologists who use a multilevel modeling
to conduct single-case data analyses. Since this study only used the simplest correlated level-1
error structure, AR(1), methodologists may want to look at more complex correlated level-1
error structures to investigate if the results from this study can be replicated with other error
structures. Similarly, further research can be done using different types of outcomes, such as
binary, ordinal, or count outcomes. This would be reasonable because many of the outcomes
used in single-case research are not continuous outcomes.

In addition, more simulation work can be done with data having an extremely
heterogeneous error structure. The results of Study 3 indicate that the different modeling
methods in the level-1 error structure can have a substantial impact on both fixed effects and
variance components when analyzing data having the extremely heterogeneous error structure.
This finding is particularly distinguished from previous works that have investigated the
misspecifications of the level-1 error structures on the single-case research and other research on
the longitudinal analysis. The previous studies have found that the fixed effects are generally

robust to misspecifications of the level-1 error structure (Ferron et al., 2009; Ferron et al., 2002;
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Kwok et al, 2007; Merlande, 2014; Owen, 2011). However, Study 3 found that the
misspecification of the level-1 error structure can have a substantial impact on both fixed effects
and variance components. Therefore, these finding can be meaningful and beneficial for both
researchers who are interested in average treatment effects as well as researchers who are
interested in variation in the treatment, variation within cases, and autocorrelation, if it can be
generalized to a broad range of the conditions. Because Study 3 only included a few conditions,
further work should include more conditions that would allow for a thorough investigation of the
impact of different models of the level-1 error structure on the estimates of multilevel models
used with heterogeneous single-case data.

Additionally, this study can be expended to more general growth curve studies or meta-
analysis studies using multilevel modeling. For those studies, it is possible that the level-1 error
structure may vary across upper levels (e.g., classes or schools) or studies. Further work needs to
be done to explore if the level-1 error structure varies across different studies or upper levels in
real data sets, and if so, methodologist may want to examine if different methods of modeling
level-1 error structure have some impact on the results of those studies.

Furthermore, further research should be done to find the alternative estimation
approaches on estimating variance components. This study indicated that the variance
components are generally biased, especially the level-2 error variance. Thus, it would be worth
investigating if the observed bias in the variance components can be reduced by using different
approaches, such as different choices of priors (e.g., the use of more informative priors) in the
Bayesian framework.

Finally, this study focused on only the Bias, RMSE, the CI coverage, and the width

outcomes of the parameter estimates. It would be interesting to investigate the impact of the
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different modeling in the level-1 error structure on Type I error rates and the power estimates of
the treatment effects. Some previous research on the misspecification of the multilevel growth
curve models had found that the under specified models showed within the nominal alpha level
(.05) of Type I error rates but the low statistical power of the fixed effects (Kwok et al., 2007;
Ferron et al., 2002). There are few single-case studies that looked at the Type I error rate and the
power estimates. Previous work with the three-level models on the single-case data (Merlande,
2014) had found that the Type I error rates tended to be close to the nominal level which is
consistent with the previous studies of the multilevel growth curve models. In addition, Merlande
(2014) had found that the variability at the upper levels had substantial impact on the power
estimates of the fixed effects. Since few studies were done on the Type I error rates and the
power estimates in the multilevel modeling frame work on the single-case data analyses, it would

be worthwhile to investigate these outcomes of the parameter estimates.
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APPENDIX A: TABLES OF RELATIVE BIAS VALUES

Table Al
Relative bias for the fixed treatment effects
. . Shift in level Shift in slope
Num  Series Variation
ber  length in the Homo Moderately Severely hetero Homo Moderately hetero | Severely hetero
of per level-2 hetero
cases  case errors Model Model Model Model Model Model Model  Model Model Model  Model
Model 1
1 2 1 2 1 2 2 1 2 1 2
4 10 Level-2 -0.004  -0.005 0.030 0.027 -0.033  -0.036 | 0.094 0.090 0.018 0.011 0.033 0.002
Level-1 0.001 -0.002  -0.013 -0.012 0.014 0.014 -0.001 -0.001 0.063 0.055 -0.062 -0.076
20 Level-2 0.012 0.009 -0.008  -0.007  0.000 -0.001 | 0.038 0.040 -0.018 -0.021 -0.027 -0.029
Level-1 -0.011  -0.011 -0.005  -0.007  0.007 0.008 0.052 0.056 0.020 0.021 0.051 0.051
8 10 Level-2 0.004  0.003 0.020 0.017 0.010 0.007 0.122 0.118 -0.030 -0.024 0.012 0.009
Level-1 0.007 0.008 -0.003  -0.002  0.001 0.003 0.040 0.043 0.006 0.004 -0.010 -0.002
20 Level-2 0.007 0.007 -0.004  -0.005 -0.002 -0.004 | 0.017 0.021 0.004 0.003 0.027 0.026
Level-1 0.005 0.005 -0.008  -0.010 -0.003  -0.001 | -0.011 -0.012 -0.005 -0.004 -0.016 -0.011
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Table A2
Relative bias for the variance components

. .. Level-2 error SD for shift in level Level-2 SD for shift in slope
Num  Series  Variation
i M tel

ber  length in the Homo oderately Severely hetero Homo Moderately hetero Severely hetero

of per level-2 hetero
cases  case errors Model Model Model Model Model Model Model 1 Model 2 Model Model 2 Model Model 2

1 2 1 2 1 2 1 1

4 10 Level-2 1.134  1.129 1.175 1.159 1.257 1.235 1.610 1.604 1.548 1.545 1.678 1.618

Level-1 2.104  2.099 2.019 2.012 2.122 2.049 | 2.983 2.975 2.860 2.860 2.885 2.795

20 Level-2 1.045 1.052 1.056 1.062 1.111 1.104 | 0.941 0.927 0.987 0.974 1.001 0.983
Level-1 1.743 1.759 1.654 1.670 1.657 1.636 1.240 1.248 1.227 1.210 1.229 1.199

8 10 Level-2 0.177  0.172 0.182 0.170 0.177 0.174 ] 0.279 0.271 0.217 0.202 0.242 0.212
Level-1 0.434  0.432 0.423 0.418 0.432 0.384 | 0.650 0.650 0.589 0.567 0.657 0.590

20 Level-2 0.164  0.158 0.143 0.133 0.154 0.162 0.173 0.154 0.169 0.153 0.159 0.148

Level-1 0362  0.363 0.296 0.287 0.281 0.262 0.192 0.172 0.150 0.134 0.196 0.183
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APPENDIX B: TABLES OF ETA-SQUARED VALUES

Table A3
Eta-squared values (n2) for the association of the design factors with the bias for the
shift in level parameter

99%
Variation in the level-2 errors*True level-1 error structure 0.24476
Series length per case*Variation in the level-2 errors*True level-1 error structure 0.20389
Number of cases*Variation in the level-2 errors*True level-1 error structure 0.14989
Series length per case*True level-1 error structure 0.11015
Series length per case*Number of cases*Variation in the level-2 errors*True level-1 error
structure 0.10181
Series length per case*Number of cases*True level-1 error structure 0.04305
Number of cases 0.02686
Series length per case*Number of cases 0.02642
Series length per case 0.02012
Series length per case*Number of cases*Variation in the level-2 errors 0.02011
Number of cases*True level-1 error structure 0.01605
True level-1 error structure 0.01196
Number of cases*Variation in the level-2 errors 0.00999
Variation in the level-2 errors 0.00896
Variation in the level-2 errors*Type of model 0.00124
Variation in the level-2 errors*Type of model*True level-1 error structure 0.00087
Series length per case*Variation in the level-2 errors*Type of model*True level-1 error
structure 0.00086
Type of model 0.00078
Number of cases*Type of model 0.00043
Series length per case*Variation in the level-2 errors*Type of model 0.00029
Number of cases*Type of model*True level-1 error structure 0.00025
Series length per case*Variation in the level-2 errors 0.00021
Series length per case*Type of model 0.00018
Series length per case*Number of cases*Type of model 0.00014
Number of cases*Variation in the level-2 errors*Type of model 0.00012
Series length per case*Number of cases*Variation in the level-2 errors*Type of model 0.00011
Type of model*True level-1 error structure 0.0001
Series length per case*Number of cases*Type of model*True level-1 error structure 0.00003
Number of cases*Variation in the level-2 errors*Type of model*True level-1 error structure 0.00003
Series length per case*Type of model*True level-1 error structure 0.00002
Total Explained 99%
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Table A4
Eta-squared values (n2) for the association of the design factors with the bias for the
shift in slope parameter

2

n
True level-1 error structure 0.24789
Variation in the level-2 errors*True level-1 error structure 0.14349
Series length per case*Number of cases*True level-1 error structure 0.10482
Series length per case*True level-1 error structure 0.09062
Series length per case*Number of cases*Variation in the level-2 errors 0.08815
Series length per case*Variation in the level-2 errors*True level-1 error structure  0.08258
Series length per case*Variation in the level-2 errors 0.06979
Number of cases*True level-1 error structure 0.03448
Variation in the level-2 errors 0.02223
Number of cases*Variation in the level-2 errors 0.0209
Series length per case*Number of cases 0.01767
Series length per case 0.01627
Number of cases 0.00464
Number of cases*Variation in the level-2 errors*True level-1 error structure 0.00158
Number of cases*Type of model 0.00144
Number of cases*Type of model*True level-1 error structure 0.00139
Series length per case*Type of model 0.00119
Series length per case*Number of cases*Type of model 0.00118
Type of model*True level-1 error structure 0.00079
Variation in the level-2 errors*Type of model*True level-1 error structure 0.0007
Type of model 0.00059
Variation in the level-2 errors*Type of model 0.0005
Series length per case*Type of model*True level-1 error structure 0.00047
Series length per case*Variation in the level-2 errors*Type of model 0.00011
Number of cases*Variation in the level-2 errors*Type of model 0.00004
Total Explained 95%
Table AS
Eta-squared values (n2) for the association of the design factors with the RMSE for the
shift in level parameter
1
Number of cases 0.48343
Variation in the level-2 errors 0.3801
Series length per case 0.10668
True level-1 error structure 0.00113
Type of model 0.00025
Total Explained 97%
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Table A6

Eta-squared values (n2) for the association of the design factors with the RMSE for the

shift in slope parameter

2

n
Series length per case 0.47322
Number of cases 0.27695
Variation in the level-2 errors 0.22127
True level-1 error structure 0.00143
Type of model 0.00013
Total Explained 97%
Table A7

Eta-squared values (n2) for the association of the design factors with the CI coverage for the

shift in level parameter

2

n
Number of cases 0.88425
Variation in the level-2 errors 0.03597
Series length per case 0.01128
True level-1 error structure 0.00842
Type of model 0.00127
Total Explained 94%
Table A8

Eta-squared values (n2) for the association of the design factors with the CI coverage for the

shift in slope parameter

2

n
Number of cases 0.8304
Series length per case 0.08105
Variation in the level-2 errors 0.0166
Series length per case*Number of cases 0.01376
Series length per case*Variation in the level-2 errors 0.00771
Series length per case*True level-1 error structure 0.00529
Variation in the level-2 errors*True level-1 error structure 0.00168
Number of cases*Variation in the level-2 errors 0.00064
True level-1 error structure 0.00051
Series length per case*Type of model 0.00032
Type of model 0.00032
Type of model*True level-1 error structure 0.00019
Number of cases*True level-1 error structure 0.00011
Variation in the level-2 errors*Type of model 0.00006
Number of cases*Type of model 0.00002
Total Explained 96%
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Table A9
Eta-squared values (n2) for the association of the design factors with the CI width for the
shift in level parameter

2

shift in level n

Number of cases 0.84039
Variation in the level-2 errors 0.11522
Series length per case 0.01657
True level-1 error structure 0.0002
Type of model 0
Total Explained 97%

Table A10

Eta-squared values (n2) for the association of the design factors with the CI width for the
shift in slope parameter

2

n
Number of cases 0.65402
Series length per case 0.19115
Variation in the level-2 errors 0.0952
True level-1 error structure 0.00046
Type of model 0.00003
Total Explained 94%

Table A11
Eta-squared values (n2) for the association of the design factors with the bias of the level-2 error
standard deviation for the shift in level parameter

2

n
Number of cases 0.95699
Series length per case 0.01168
Variation in the level-2 errors 0.00933
True level-1 error structure 0.00035
Type of model 0.00005
Total Explained 98%
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Table A12

Eta-squared values (n2) for the association of the design factors with the bias of the level-2 error

standard deviation for the shift in slope parameter

2

n
Number of cases 0.74042
Series length per case 0.15689
Series length per case*Number of cases 0.06818
Variation in the level-2 errors 0.01321
Number of cases*Variation in the level-2 errors 0.01295
Series length per case*Variation in the level-2 errors 0.00605
Series length per case*True level-1 error structure 0.00046
True level-1 error structure 0.0004
Type of model 0.00017
Variation in the level-2 errors*True level-1 error structure 0.00016
Type of model*True level-1 error structure 0.00007
Number of cases*True level-1 error structure 0.00006
Series length per case*Type of model 0.00001
Variation in the level-2 errors*Type of model 0.00001
Number of cases*Type of model 0
Total Explained 99%
Table A13

Eta-squared values (n2) for the association of the design factors with the bias of the level-1 error

standard deviation parameter

99%
Series length per case 0.25041
True level-1 error structure 0.22317
Variation in the level-2 errors 0.19479
Number of cases 0.11453
Type of model*True level-1 error structure 0.10383
Series length per case*Variation in the level-2 errors 0.04285
Number of cases*Type of model 0.01779
Series length per case*Number of cases 0.01247
Series length per case*Type of model 0.00873
Series length per case*True level-1 error structure 0.00854
Number of cases*True level-1 error structure 0.00729
Type of model 0.00456
Number of cases*Variation in the level-2 errors 0.00016
Variation in the level-2 errors*True level-1 error structure 0.0001
Variation in the level-2 errors*Type of model 0.00008
Total Explained 99%
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Table A14

Eta-squared values (n2) for the association of the design factors with the bias of the

autocorrelation parameter

2

n
True level-1 error structure 0.88205
Variation in the level-2 errors 0.04965
Series length per case 0.02232
Type of model 0.0043
Number of cases 0.00322
Total Explained 96%
Table A15

Eta-squared values (n2) for the association of the design factors with the RMSE of the level-2

error standard deviation for the shift in level parameter

2

n
Number of cases 0.8857
Variation in the level-2 errors 0.08459
Series length per case 0.00822
True level-1 error structure 0.00029
Type of model 0.00015
Total Explained 98%
Table A16

Eta-squared values (n2) for the association of the design factors with the RMSE of the level-2

error standard deviation for the shift in slope parameter

2

n
Number of cases 0.73172
Series length per case 0.13375
Variation in the level-2 errors 0.05757
Series length per case*Number of cases 0.05416
Number of cases*Variation in the level-2 errors 0.01477
Series length per case*Variation in the level-2 errors 0.00456
Type of model 0.00026
Number of cases*True level-1 error structure 0.00023
True level-1 error structure 0.00023
Series length per case*True level-1 error structure 0.00018
Type of model*True level-1 error structure 0.00011
Variation in the level-2 errors*True level-1 error structure 0.00009
Series length per case*Type of model 0.00003
Number of cases*Type of model 0.00001
Variation in the level-2 errors*Type of model 0

Total Explained

>99%
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Table A17

Eta-squared values (n2) for the association of the design factors with the RMSE of the level-1

error standard deviation parameter

2

n

True level-1 error structure 0.62073
Type of model*True level-1 error structure 0.16449
Series length per case 0.10855
Type of model 0.05149
Number of cases 0.02176
Series length per case*Type of model 0.00789
Number of cases*True level-1 error structure 0.00775
Variation in the level-2 errors 0.0043
Series length per case*Number of cases 0.00315
Number of cases*Type of model 0.00207
Series length per case*Variation in the level-2 errors 0.00181
Series length per case*True level-1 error structure 0.00046
Variation in the level-2 errors*True level-1 error structure 0.00013
Variation in the level-2 errors*Type of model 0.00005
Number of cases*Variation in the level-2 errors 0.00001
Total Explained 99%

Table A18

Eta-squared values (n2) for the association of the design factors with the RMSE of the

autocorrelation parameter

12

Series length per case 0.06078
Number of cases 0.04635
Type of model 0.00194
Variation in the level-2 errors 0.00032
Total Explained 94%
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Table A19

Eta-squared values (n2) for the association of the design factors with the CI coverage of the

level-2 error standard deviation for the shift in level parameter

Tl2

Variation in the level-2 errors

Series length per case

Series length per case*Number of cases*True level-1 error structure
Type of model

Series length per case*Variation in the level-2 errors

Series length per case*Number of cases*Variation in the level-2
errors*True level-1 error structure

Series length per case*True level-1 error structure

Series length per case*Variation in the level-2 errors*True level-1 error
structure

True level-1 error structure

Number of cases*Variation in the level-2 errors

Number of cases*Variation in the level-2 errors*True level-1 error
structure

Number of cases

Series length per case*Number of cases*Type of model*True level-1 error
structure

Variation in the level-2 errors*True level-1 error structure

Number of cases*True level-1 error structure

Number of cases*Type of model

Type of model*True level-1 error structure

Series length per case*Number of cases*Variation in the level-2 errors
Number of cases*Variation in the level-2 errors*Type of model

Series length per case*Type of model*True level-1 error structure
Number of cases*Variation in the level-2 errors*Type of model*True
level-1 error structure

Number of cases*Type of model*True level-1 error structure

Series length per case*Type of model

Series length per case*Number of cases*Type of model

Variation in the level-2 errors*Type of model

Series length per case*Variation in the level-2 errors*Type of model*True
level-1 error structure

Variation in the level-2 errors*Type of model*True level-1 error structure
Series length per case*Number of cases*Variation in the level-2
errors*Type of model

Series length per case*Number of cases

Series length per case*Variation in the level-2 errors*Type of model

0.29178
0.20843
0.10725
0.06713
0.05435

0.04182
0.04138

0.03496
0.0204
0.01805

0.01632
0.0156

0.01346
0.01297
0.00824
0.00806
0.00682

0.0055
0.00373
0.00367

0.00227
0.00169
0.00136
0.00094
0.00061

0.00027
0.00017

0.00008
0.00003
0.00003

Total Explained

99%

300

www.manaraa.com



Table A20

Eta-squared values (n2) for the association of the design factors with the CI coverage of the

level-2 error standard deviation for the shift in slope parameter

2

n
Series length per case 0.64808
Variation in the level-2 errors*True level-1 error structure 0.06562
Type of model 0.06035
Variation in the level-2 errors 0.05248
Series length per case*Variation in the level-2 errors 0.04775
True level-1 error structure 0.04525
Number of cases*True level-1 error structure 0.01203
Series length per case*True level-1 error structure 0.00568
Number of cases*Variation in the level-2 errors 0.00503
Number of cases 0.00384
Series length per case*Type of model 0.00283
Type of model*True level-1 error structure 0.00199
Series length per case*Number of cases 0.00057
Variation in the level-2 errors*Type of model 0.0001
Number of cases*Type of model 0
Total Explained 95%
Table A21

Eta-squared values (n2) for the association of the design factors with the CI coverage of the

level-1 error standard deviation parameter

2

n
True level-1 error structure 0.32557
Type of model 0.30486
Type of model*True level-1 error structure 0.18597
Series length per case 0.06123
Series length per case*Type of model 0.04574
Series length per case*True level-1 error structure 0.03272
Number of cases*True level-1 error structure 0.00187
Number of cases 0.00077
Variation in the level-2 errors*True level-1 error structure 0.0004
Number of cases*Type of model 0.00018
Number of cases*Variation in the level-2 errors 0.00014
Series length per case*Variation in the level-2 errors 0.00013
Series length per case*Number of cases 0.00011
Variation in the level-2 errors*Type of model 0.00011
Variation in the level-2 errors 0
Total Explained 96%
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Table A22

Eta-squared values (n2) for the association of the design factors with the CI coverage of the

autocorrelation parameter

2

n
True level-1 error structure 0.29609
Type of model 0.22422
Series length per case 0.17723
Type of model*True level-1 error structure 0.07331
Series length per case*True level-1 error structure 0.07218
Number of cases 0.05228
Series length per case*Type of model 0.02828
Number of cases*True level-1 error structure 0.02098
Number of cases*Type of model 0.01599
Variation in the level-2 errors 0.00922
Variation in the level-2 errors*True level-1 error structure 0.00419
Series length per case*Number of cases 0.00185
Variation in the level-2 errors*Type of model 0.0015
Number of cases*Variation in the level-2 errors 0.00053
Series length per case*Variation in the level-2 errors 0.00003
Total Explained 98%

Table A23

Eta-squared values (n2) for the association of the design factors with the CI width of the level-2

error standard deviation for the shift in level parameter

2

n
Number of cases 0.88199
Variation in the level-2 errors 0.08128
Series length per case 0.00941
True level-1 error structure 0.00015
Type of model 0
Total Explained 97%
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Table A24
Eta-squared values (n2) for the association of the design factors with the CI width of the level-2
error standard deviation for the shift in slope parameter

2

n
Number of cases 0.698
Variation in the level-2 errors 0.09949
Series length per case 0.06895
Type of model 0.04344
Number of cases*Variation in the level-2 errors 0.03027
Series length per case*Number of cases 0.02176
Series length per case*Type of model 0.01841
Number of cases*Type of model 0.01166
Variation in the level-2 errors*Type of model 0.00052
True level-1 error structure 0.00017
Series length per case*Variation in the level-2 errors 0.00008
Type of model*True level-1 error structure 0.00006
Series length per case*True level-1 error structure 0.00004
Variation in the level-2 errors*True level-1 error structure 0.00002
Number of cases*True level-1 error structure 0.00001
Total Explained 99%

Table A25
Eta-squared values (n2) for the association of the design factors with the CI width of the level-1
error standard deviation parameter

2

n
Type of model 0.43862
Series length per case 0.38414
Number of cases 0.11094
True level-1 error structure 0.0172
Variation in the level-2 errors 0.00949
Total Explained 96%
Table A26
Eta-squared values (n2) for the association of the design factors with the CI width of the
autocorrelation parameter
nz
Series length per case 0.47031
Type of model 0.33877
Number of cases 0.16732
Variation in the level-2 errors 0.00931
True level-1 error structure 0.00028
Total Explained 99%
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APPENDIX C: TABLES AND FIGURES OF INDIVIDUAL ESTIMATES OF
OUTCOME VALUES

Table A27
Individual bias, RMSE, CI coverage and width for the fixed treatment effects
Shift in level Shift in slope
Model 1 Model 2 Modell Model2

Mean SD Mean SD Mean SD Mean SD
Bias -0.001  0.019 -0.002 0.019 0.003 0.008 0.002 0.007
RMSE 0.887  0.149 0.874 0.147 0.281 0.108 0.277 0.105
Clcoverage 0.953  0.009 0.958 0.009 0.958 0.013 0.964 0.012

CI width 3.636 0.613 3.654 0.632 1.237 0.549 1.249 0.537
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Figure Al. Box plots illustrating the distribution of the bias for the shift in level and the shift in
slope across Model 1 which did not model between case variation, and Model 2 which models
between case variation.

305

www.manharaa.com



1.1 4

1.0 4
<
=

£ 09+
£
&
w

2 o8-
(73

0.7 4

0.6 4

L) )
Model 1 Model 2
Type of model

0.4
@
s
w
=i
L
£
w

2 03+
8
w
73]
=
(74

0.2 4

L T
Model 1 Model 2
Type of model

Figure A2. Box plots illustrating the distribution of the RMSE for the shift in level and the shift
in slope across Model 1 which did not model between case variation, and Model 2 which models
between case variation.
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Figure A3. Box plots illustrating the distribution of the CI coverage for the shift in level and the
shift in slope across Model 1 which did not model between case variation, and Model 2 which
models between case variation.
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Figure A4. Box plots illustrating the distribution of the CI width for the shift in level and the
shift in slope across Model 1 which did not model between case variation, and Model 2 which
models between case variation.
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APPENDIX D: WinBUGS codes for Model 1 and Model 2

Model 1

Model

{

forCi1 inl1l:N){
for(jinl :T){

Y[i , j]1 ~ dnorm(theta[i ,j],tauc)

muli , j] <- alpha[i] + beta[i]*step(X[J]-CP[i]D+ ca[i]l * XD +
da[i]*(x]1 - CPLilD*step(xLil1-CPLi1)

}
theta [1,1]<- mu [i,1]
for ( J in2 :T){

theta[i ,jl<-mu[i ,j]+tgamma*(Y[i

}
alpha[i] ~ dnorm(alphac,alphatau)
beta[i] ~ dnorm(betac,betatau)

ca[i] ~ dnorm(cac,catau)
da[i] ~ dnorm(dac,datau)

}

alphac ~ dnorm(0.0,1.0E-6)
betac ~ dnorm(0.0,1.0E-6)
cac ~ dnorm(0.0,1.0E-6)
dac ~ dnorm(0.0,1.0E-6)
sigmaalpha~ dunif(0,100)
sigmabeta~ dunif(0,100)
sigmaca~ dunif(0,100)
sigmada~ dunif(0,100)

alphatau<-1/(sigmaalpha*sigmaalpha)
betatau<-1/(sigmabeta*sigmabeta)

catau<-1/(sigmaca*sigmaca)
datau<-1/(sigmada*sigmada)

tgamma~dnorm(0.0,1.0E-6)1(-0.99999,0.99999)

tsigma~ dunif(0,100)
tauc<- 1 / (tsigma*tsigma)
}

Model 2:

Model
{
for( 1

nl:N)({
for( jJ inl

:T) {

,j-11-mu[i

i
i
Y[i , j] ~ dnorm(theta[i ,j],tauc[i])
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muli , j] <- alpha[i] + beta[i]*step(X[J1-CP[i]D+ ca[i] * xX[J1) +

ga[i]*(X[i] - CPLiD™*step(x[J1-CPLi1)

theta [i1,1]<- mu [i1,1]

for (J in2 :T1T){

theta[i ,jl<-mu[i ,jl+tgamma[i]*(Y[1 ,j-1]-mu[i ,j-1])

}

alpha[i] ~ dnorm(alphac,alphatau)

beta[i] ~ dnorm(betac,betatau)

ca[i] ~ dnorm(cac,catau)

da[i] ~ dnorm(dac,datau)
tgamma[i1]~dnorm(simge,gr)1(-0.99999,0.99999)
tsigma[i] ~ dunif(sa,sb)

tauc[i] <- 1 /7 (tsigma[i]*tsigmali])

}

alphac ~ dnorm(0.0,1.0E-6)
betac ~ dnorm(0.0,1.0E-6)
cac ~ dnorm(0.0,1.0E-6)

dac ~ dnorm(0.0,1.0E-6)
sigmaalpha~ dunif(0,100)
sigmabeta~ dunif(0,100)
sigmaca~ dunif(0,100)
sigmada~ dunif(0,100)
alphatau<-pow(sigmaalpha, -2)
betatau<-pow(sigmabeta, -2)
catau<-pow(sigmaca, -2)
datau<-pow(sigmada, -2)
simge~dnorm(0.0,1.0E-6)
simgr~ dunif(0,100)

gr <- pow(simgr, -2)

sa~ dunif(0,100)

sb~ dunif(sa,100)
tmsig<-mean(tsigmal[])
tmgamma<-mean(tgammal])
smsig<- (satsb)/2

svsig<- sqrt((pow((sb-sa), 2))/712)
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